集合降維變分同化中的初始擾動和局地化
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家自然科學基金項目(41905031)和國家重點研發計劃項目(2017YFC1501603)共同資助


Initial Perturbation and Localization in Ensemble-Based Reduced-Dimensional Variational Assimilation Method
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    集合降維變分同化方法ERDVar不需要求解切線性模式和伴隨模式,不僅能減少同化計算量,而且能夠提供“流依賴”的背景誤差協方差矩陣。本文提出用NMC初始擾動生成方法和分區同化方案,來解決初始擾動樣本生成問題和全球同化局地化問題,最終實現將ERDVar應用到全球中期數值預報模式T106L19。試驗結果表明:①使用ERDVar方法能夠有效提取真實增量信息,提高全球同化精度。②用NMC方法產生的擾動樣本反映預報誤差結構特征,在預報過程中不容易衰減,同化后至少使預報誤差降低10%。③與全球ERDVar同化試驗相比,分區ERDVar同化試驗各變量平均的均方根誤差降低14%,計算代價進一步降低。分區ERDVar方法和NMC樣本的聯合應用使同化改進效果更穩定。

    Abstract:

    The Ensemble-based Reduced Dimension Variational (ERDVar) assimilation method can not only reduce the computational cost without solving the tangential model and adjoint model but also provide the “follow dependent” background error covariance matrix. The NMC (National Meteorogical Center, USA) perturbation method and Regional ERDVar (R-ERDVar) are proposed to resolve the initial perturbation and localization in this article. Finally, ERDVar has been applied to the Global Medium-range Numerical Weather Prediction Model T106L19. The results show that: (1) It is effective to obtain higher accuracy in assimilation using ERDVar, as the information of true innovations is extracted. (2) The NMC initial perturbations reflect the structure of forecast errors and cannot decay easily during forecast subsequently, with at least 10% reduction on forecast errors in ERDVar experiments. (3) Compared with the global ERDVar experiments, there is a 14% reduction for all variable RMSE on average in R-ERDVar experiments, with smaller computational cost. Farther more, the combination use of the R-ERDVar method and NMC perturbation samples can make improvements more stable.

    參考文獻
    相似文獻
    引證文獻
引用本文

希爽.集合降維變分同化中的初始擾動和局地化[J].氣象科技,2022,50(5):670~676

復制
分享
文章指標
  • 點擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2021-03-23
  • 定稿日期:2022-08-22
  • 錄用日期:
  • 在線發布日期: 2022-10-28
  • 出版日期:
您是第位訪問者
技術支持:北京勤云科技發展有限公司
午夜欧美大片免费观看,欧美激情综合五月色丁香,亚洲日本在线视频观看,午夜精品福利在线
>