午夜欧美大片免费观看,欧美激情综合五月色丁香,亚洲日本在线视频观看,午夜精品福利在线

基于稀疏注意力的雷達回波外推方法及應用
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

四川省科技計劃項目(2023JDZH0034)、四川省科技成果轉移轉化示范項目(2024ZHGG0026)資助


Research on Radar Echo Extrapolation Method Based on Sparse Attention
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    基于深度學習的雷達回波外推方法已被廣泛應用于具有挑戰性的短臨降水預報任務中。然而,現有方法在預測精度上存在不夠高的問題,而且在處理高分辨率和長時間序列數據時,訓練速度較慢。為此,本文提出了一種基于稀疏融合注意力的深度學習模型——PFA-TransUNet(Probsparse Fusion Attention TransUNet)。該模型是一種編碼器-解碼器架構,通過在編碼器路徑中引入多層Transformer,然后將傳統多頭自注意力分解為時空維度計算,從而充分融合時空信息。同時,引入稀疏注意力方法,降低了自注意力計算復雜度,縮短了訓練時間。在河北省雷達數據集上的實驗結果表明,與其他先進的經典模型相比,PFA-TransUNet在外推精度,均方根誤差,結構相似性,雷達回波為20、30、40 dBz時的臨界成功指數,訓練速度等多個評價指標上均有所提升,展現出了優異的整體性能。

    Abstract:

    The deep learning-based radar echo extrapolation method is widely applied to the challenging task of short-term precipitation forecasting. However, existing methods still face issues with prediction accuracy, and when dealing with high-resolution and long-time sequence data, the training speed tends to be slow. To address these problems, this paper proposes a deep learning model based on sparse fusion attention - PFA-TransUNet (ProbSparse Fusion Attention TransUNet). This model is an encoder-decoder architecture, where a multi-layer Transformer is introduced in the encoder path. It then decomposes the traditional multi-head self-attention mechanism into computations in the spatiotemporal dimensions, allowing for the full integration of spatiotemporal information. In addition, the sparse attention method is incorporated to reduce the computational complexity of self-attention, significantly shortening the training time. Experimental results on the Hebei Province radar dataset show that compared to other advanced classical models, PFA-TransUNet outperforms them in various evaluation metrics such as extrapolation accuracy, Mean Squared Error (MSE), Structural Similarity Index (SSIM), Critical Success Index (CSI) at 20, 30, and 40 dBz, and training speed. The model demonstrates exceptional overall performance. In recent years, radar echo extrapolation becomes an increasingly important approach in precipitation forecasting, especially for nowcasting (short-term forecasting) tasks, where the ability to predict precipitation with high accuracy and efficiency is critical. However, due to the complex spatiotemporal nature of radar echoes, previous methods struggle to efficiently capture both spatial and temporal dependencies, which leads to suboptimal forecasting results. Furthermore, the computational cost associated with high-resolution and long-time series data further hampers the efficiency of current deep learning models. PFA-TransUNet addresses these limitations by incorporating a sparse attention mechanism, which helps reduce the computational load without sacrificing model performance. Traditional self-attention mechanisms in Transformer models can be computationally expensive due to the quadratic complexity of attention calculations, especially when applied to large datasets. By leveraging sparse attention, the proposed model focuses on the most relevant parts of the input data, thus improving computational efficiency and speeding up training. Another key feature of PFA-TransUNet is its ability to effectively model spatiotemporal dependencies. By decomposing the multi-head self-attention into spatiotemporal dimensions, the model captures the intricate relationships between space and time, leading to more accurate extrapolations of radar echoes. This is crucial in precipitation forecasting, as both spatial distribution and temporal evolution play a significant role in the prediction accuracy. The experimental results from the Hebei radar dataset indicate that PFA-TransUNet achieves superior performance compared to traditional models. The model shows a substantial improvement in forecast accuracy, with lower MSE values and higher SSIM scores, indicating better preservation of the structure of radar echoes. Furthermore, the model excels in terms of CSI at different dBz thresholds, demonstrating its robustness in detecting precipitation events under various conditions. Most importantly, the model’s training speed is significantly improved due to the sparse attention mechanism, making it suitable for real-time forecasting applications. In conclusion, PFA-TransUNet presents a promising solution for radar echo extrapolation tasks, especially in the context of short-term precipitation forecasting. Its combination of sparse fusion attention and spatiotemporal modelling makes it a powerful tool for improving the accuracy and efficiency of radar-based forecasting systems.

    參考文獻
    相似文獻
    引證文獻
引用本文

王杰,陳靜,楊昊,陳敏,周航,王勇.基于稀疏注意力的雷達回波外推方法及應用[J].氣象科技,2025,53(4):468~478

復制
分享
文章指標
  • 點擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2024-11-07
  • 定稿日期:2025-01-24
  • 錄用日期:
  • 在線發布日期: 2025-08-27
  • 出版日期:
您是第位訪問者
技術支持:北京勤云科技發展有限公司
午夜欧美大片免费观看,欧美激情综合五月色丁香,亚洲日本在线视频观看,午夜精品福利在线
欧美激情影院| 一本色道精品久久一区二区三区| 久久久久久综合| 欧美日本久久| 欧美婷婷六月丁香综合色| 亚洲福利一区| 欧美精品99| 亚洲日本中文字幕区| 国产精品狼人久久影院观看方式| 揄拍成人国产精品视频| 欧美精品国产精品| 欧美激情影院| 国产在线观看一区| 欧美一区二区三区喷汁尤物| 国产一区 二区 三区一级| 欧美午夜电影在线| 欧美精品一区在线发布| 欧美一区亚洲一区| 在线播放不卡| 国产精品久久久久9999| 午夜精品福利在线观看| 国产精品乱看| 你懂的国产精品永久在线| 欧美日韩在线免费观看| 国内精品久久久久影院薰衣草| 美女视频黄免费的久久| **欧美日韩vr在线| 国产一区二区三区高清| 欧美一区二区免费视频| 一二三四社区欧美黄| 国产欧美一区二区三区另类精品| 亚洲图片欧洲图片日韩av| 亚洲欧美日韩另类| 欧美日韩三级| 欧美一区二区免费观在线| 欧美成年人视频网站欧美| 日韩视频免费大全中文字幕| 欧美精品一区二区在线观看| 午夜精品久久久久久99热软件| 亚洲久久一区| 美日韩精品免费| 欧美精品在线播放| 亚洲成色777777女色窝| 99国产精品| 亚洲国产91精品在线观看| 在线国产欧美| 国产精品青草综合久久久久99| 欧美性生交xxxxx久久久| 老司机aⅴ在线精品导航| 欧美精品一区二区三区一线天视频| 久久成人精品| 欧美sm视频| 久久国产精品久久久| 久久久99爱| 亚洲一区区二区| 欧美噜噜久久久xxx| 久久在线精品| 亚洲视频免费在线观看| 国产日韩在线播放| 最新国产乱人伦偷精品免费网站| 欧美日韩无遮挡| 日韩一级不卡| 亚洲国产精品第一区二区三区| 亚洲美女视频| 99精品视频免费| 久久精品综合一区| 国产精品第一区| 国产精品亚洲综合一区在线观看| 国产精品日韩精品欧美精品| 亚洲另类视频| 国产精品成人一区二区网站软件| 国产精品久久97| 亚洲福利久久| 伊人伊人伊人久久| 久久九九热免费视频| 欧美日韩一区精品| 国产模特精品视频久久久久| 亚洲男人第一av网站| 亚洲女女女同性video| 欧美色视频在线| 国产精品美女www爽爽爽视频| 国产欧美日韩视频| 国产一区91精品张津瑜| 免费在线成人av| 国产免费观看久久黄| 一本色道婷婷久久欧美| 国产一区久久| 欧美色精品在线视频| 在线观看欧美日韩国产| 一区二区三区精品久久久| 亚洲少妇中出一区| 欧美日韩亚洲一区二区三区在线| 欧美视频国产精品| 国产欧美一区二区三区久久人妖| 在线播放一区| 久久婷婷人人澡人人喊人人爽| 91久久久在线| 亚洲日本电影在线| 午夜精品影院在线观看| 欧美系列亚洲系列| 国产精品视频九色porn| 久久久久这里只有精品| 亚洲欧美在线aaa| 一区二区三区 在线观看视| 欧美日韩一二区| 伊人春色精品| 亚洲福利视频在线| 欧美另类极品videosbest最新版本| 销魂美女一区二区三区视频在线| 亚洲国产精品一区制服丝袜| 国产乱子伦一区二区三区国色天香| 国产伦精品一区二区三区在线观看| 欧美视频不卡| 欧美日韩国产综合网| 国产精品国产a| 亚洲精品日韩一| 国产精品专区h在线观看| 亚洲精品美女| 麻豆国产精品777777在线| 国产精品国产三级国产a| 免费在线亚洲欧美| 欧美日韩一区二区在线观看| 亚洲第一黄色| 国产精品美女久久久久aⅴ国产馆| 国产精品豆花视频| 国产精品福利在线| 久久综合给合久久狠狠狠97色69| 亚洲国产精品尤物yw在线观看| 久久久久久夜| 性久久久久久久| 亚洲日本免费| 亚洲性夜色噜噜噜7777| 一区二区在线免费观看| 欧美日韩午夜在线视频| 艳女tv在线观看国产一区| 久久久97精品| 欧美成人免费播放| 国产精品久久久久久久久搜平片| 欧美一区二区三区免费观看视频| 亚洲欧美999| 久久理论片午夜琪琪电影网| 国产伦精品一区二区三区高清版| 亚洲欧洲日产国产网站| 欧美激情一区三区| 老司机精品久久| 久久久亚洲高清| 国产精品国产精品国产专区不蜜| 亚洲一区二区精品| 91久久久亚洲精品| 性欧美video另类hd性玩具| 一本久道久久综合中文字幕| 国产老女人精品毛片久久| 欧美久久久久| 这里只有视频精品| 国产在线麻豆精品观看| 欧美三区视频| 99国产成+人+综合+亚洲欧美| 欧美午夜片在线观看| 欧美日产一区二区三区在线观看| 亚洲靠逼com| 99riav国产精品| 欧美午夜不卡在线观看免费| 欧美另类女人| 亚洲视频在线观看视频| 久热成人在线视频| 中文欧美在线视频| 久久精品一区二区三区四区| 欧美激情综合网| 欧美激情在线| 亚洲自拍偷拍色片视频| 国产精品网红福利| 一二三四社区欧美黄| 国产精品国产三级国产aⅴ9色| 欧美精品激情| 亚洲高清视频在线观看| 午夜精品久久久久久久男人的天堂| 亚洲欧美日韩一区在线观看| 久久蜜桃资源一区二区老牛| 国产日韩欧美另类| 性伦欧美刺激片在线观看| 蜜桃av综合| 国产一二三精品| 国产美女在线精品免费观看| 在线一区免费观看| 欧美日韩一区二区三区免费| 亚洲在线播放电影| 欧美精品123区| 国产一区二区高清| 国产美女诱惑一区二区| 国产精品久久久久久久久| 亚洲麻豆av| 国产一区二区在线免费观看| 久久xxxx精品视频| 亚洲欧美亚洲| 国产精品久久久久久妇女6080| 欧美另类亚洲| 亚洲免费成人| 蜜桃久久精品一区二区| 亚洲人成亚洲人成在线观看| 国产私拍一区|