隨機森林機器學習方法用于凍雨現象自動識別的試驗研究
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

中國氣象局創新發展專項(CXFZ2024J057),中國氣象局氣象探測中心2023年觀測試驗計劃(GCSY23-15)資助


Experimental Study on Automatic Recognition of Freezing Rain by Random Forest Machine Learning Method
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    現行氣象觀測業務中尚缺乏對凍雨天氣現象的自動監測,研究引入隨機森林機器學習方法,利用Ka波段毫米波云雷達的觀測數據,建立了凍雨現象的自動識別方法,為彌補觀測業務中凍雨的自動識別和連續觀測的缺乏提供一種可能。研究首先分析了2024年2月武漢地區的2次雨雪冰凍天氣過程中不同降水現象(雨、凍雨、雪和雨夾雪)的Ka波段毫米波云雷達的回波強度、偏度值的分布特征,發現在數值范圍和垂直高度分布上存在顯著差異,由此確定回波強度、偏度及近地面氣溫作為識別變量。針對武漢地區、貴州地區多個雨雪冰凍過程分別建立RF機器學習方法的凍雨現象自動識別模型,經訓練和驗證計算,測試識別準確率(Acc)均超90%、凍雨命中率均超80%,使用獨立的凍雨實例進行檢驗,檢驗Acc可達到80%。與現行觀測業務中電線積冰人工觀測比較,該方法可以自動連續地識別分鐘級凍雨現象,具備業務應用可行性。由于凍雨發生時的毫米波云雷達回波強度和偏度的地域特征明顯,需要使用不同地區的凍雨樣本數據建立針對不同地區的識別模型,擴充樣本和優化模型參數及指標,可以進一步提升該方法的識別準確率,降低虛警率。

    Abstract:

    There is still a lack of automatic monitoring for freezing rain in the current meteorological observation field. The Random Forest (RF) machine learning method is introduced here, and an automatic recognition method for freezing rain is established using the data from Ka-band Millimetre-Wave Cloud Radar (MWCR). This provides a possibility to make up for the lack of automatic recognition and continuous observation of freezing rain. Firstly, the distribution characteristics of echo intensity and skewness values of Ka-band MWCR with different precipitation phenomena (rain, freezing rain, snow, and mixed rain and snow) during two freezing weather processes occurring in the Wuhan area in February 2024 are analysed. Significant differences in the value range and vertical height distribution are found. Then, echo intensity, skewness values, and near-surface temperature are determined as identification variables. Automatic recognition models for freezing rain using the RF machine learning method are established for several freezing processes in Wuhan and Guizhou respectively. After training and verification calculations, the test recognition accuracy rate (Acc) exceeds 90%, and the freezing rain hit rate (Pod) exceeds 80%. Independent freezing rain examples are used for verification, and the verifying Acc reaches 80%. Compared with wire icing observation, this method can automatically and continuously identify freezing rain phenomena in minutes, which is also feasible for business application. Since the echo intensity and skewness values of MWCR during the freezing rain process have obvious regional characteristics, freezing rain sample data from different regions should be collected to establish recognition models for different regions. The recognition accuracy can be improved by expanding samples and optimising model parameters and indicators, as well as reducing the False Alarm Rate (Far).

    參考文獻
    相似文獻
    引證文獻
引用本文

王小蘭,仇建華,李翠翠,陶法,梁靜舒,秦建峰.隨機森林機器學習方法用于凍雨現象自動識別的試驗研究[J].氣象科技,2025,53(2):191~200

復制
分享
文章指標
  • 點擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2024-08-15
  • 定稿日期:2024-11-29
  • 錄用日期:
  • 在線發布日期: 2025-04-21
  • 出版日期:
您是第位訪問者
技術支持:北京勤云科技發展有限公司
午夜欧美大片免费观看,欧美激情综合五月色丁香,亚洲日本在线视频观看,午夜精品福利在线
>