CMA-MESO 3 km模式中自適應時間步長方案試驗
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家重點研發計劃(2022YFC3004102)、河南省重大科技專項(201400210800)共同資助


Experiment on Adaptive Time Step Scheme in CMA-MESO 3 km Model
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    時間步長是數值天氣模式穩定運行的關鍵參數。為實現業務模式穩定運行并保證運行效率,根據CMA-MESO 3 km模式時間積分方案特點,設計了自適應時間步長方案。以模式最大庫朗數為依據,提出瞄準法和削頂法兩種方法。根據CMA-MESO模式動力框架特點,研發了相應時間控制技術并在CMA-MESO 3 km系統中程序實現了自適應時間步長方案。個例和批量試驗結果顯示,采用瞄準法,模式中最大庫朗數會在目標值附近變化,使模式更加穩定。采用削頂法,會調整模式中最大庫朗數超出目標值的部分,保證模式穩定積分的同時,又盡量少地干預模式??傊?,兩種方法的自適應時間步長方案能夠有效避免模式積分溢出情況,顯著地提高模式的穩定性。對于3 km分辨率的模式來說,當庫朗數目標值取1.2左右時,削頂法比瞄準法更適合業務運行。目前,自適應時間步長方案已投入業務應用。

    Abstract:

    The time step is a critical parameter for the stable operation of numerical weather models. To achieve stable model operation and ensure efficiency, an adaptive time step scheme is designed based on the characteristics of the time integration scheme of the CMA-MESO 3 km model. This scheme relies on the model’s maximum Courant number and proposes two methods: the target aiming method and the top trimming method, depending on the adjustment approach. (1) Target aiming method: after adjusting the model’s time step, the maximum Courant number in the model approaches a given target value throughout the entire integration process. (2) Top trimming method: after adjusting the model’s time step, the maximum Courant number in the model does not exceed a given target value throughout the entire integration process. In order to implement the adaptive time step scheme in the CMA-MESO 3 km model, time control technology suitable for the CMA-MESO 3 km model is developed, including time control for the integration process, time processing for input/output, and time interpolation handling. Two types of experiments, namely case experiments and batch experiments, are designed to verify the application performance of the scheme in the CMA-MESO 3 km model. The individual case experimental results show that when the target aiming method is employed, the maximum Courant number in the model fluctuates around the target value, enhancing model stability. As the target Courant number decreases, the model becomes more stable, but the total number of integration steps and the total integration time increase. When using the top trimming method, adjustments to reduce the time step are only made when the maximum Courant number in the model exceeds the target value, keeping the maximum Courant number close to the target. When the Courant number is below this target value, if the model’s time step has been previously adjusted, the time integration step is gradually restored to the initial time step; otherwise, the model’s time step remains unchanged. The results of batch experiments indicate that the adaptive time step scheme of both methods can effectively avoid the situation of model integral overflow and significantly improve the stability of model integration. The impact of the scheme on the simulation results of model precipitation and geopotential height fields is relatively small. For a 3 km resolution model, when the target Courant number is set at approximately 1.2, the top trimming method is more suitable for operational use than the target aiming method. This scheme not only ensures the stable operation of the CMA-MESO 3 km model but also allows a larger integral time step, thereby enhancing the operational efficiency of the model. Currently, the adaptive time step is implemented in operational applications.

    參考文獻
    相似文獻
    引證文獻
引用本文

鄧蓮堂,朱立娟,張進,于翡. CMA-MESO 3 km模式中自適應時間步長方案試驗[J].氣象科技,2025,53(1):10~21

復制
分享
文章指標
  • 點擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2023-12-15
  • 定稿日期:2024-11-19
  • 錄用日期:
  • 在線發布日期: 2025-02-27
  • 出版日期:
您是第位訪問者
技術支持:北京勤云科技發展有限公司
午夜欧美大片免费观看,欧美激情综合五月色丁香,亚洲日本在线视频观看,午夜精品福利在线
>