風電機組異常風速的識別和修正方法研究
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

內蒙古自治區自然科學基金(2022MS04019)資助


Research on Identification and Correction Methods for Abnormal Wind Speed in Wind Turbines
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    有效的數據清洗手段可提高風電機組測風資料的質量,而風機數據質量對風資源評估、風功率發電有重要意義。本文提出了風功率區間識別風速、功率的異常值,再基于風機高相關片區修正風速的方法。資料選用2020—2022年內蒙古烏蘭察布市北部某風電場的風機測風數據進行分析。結果表明:風功率區間修正后的風機數據完整率提高至90%以上,利用風機高相關片區,修正了部分異常風速。該方法提高了風電場風電機組測風風速的數據質量,實現了風速和功率互相校準,為風電場發電量預測、調控提供基礎性支撐數據。

    Abstract:

    Effective data cleaning methods can improve the quality of wind turbine measurement data. The quality of wind turbine data plays a very important role in wind resource assessment, wind power accurate prediction, and performance diagnosis of wind turbines. There are many uncertainties in the data collection and monitoring systems of different wind turbines for fault diagnosis, which result in uneven quality of wind measurement data for wind turbines. This paper proposes a new method for identifying the probability interval of wind power. This method uses the characteristic changes between wind speed and power to clean and correct the effective data of wind turbine measurement data. It can effectively improve the utilisation rate of wind turbine data. This paper selects wind turbine data from a wind farm in the northern part of Ulanqab, Inner Mongolia Autonomous Region from 2020 to 2022. By sequentially subjecting the data to rationality and validity tests, wind power interval checks, and finally, cleaning and correcting abnormal data, which are carried out by utilising the correlation of the turbine. The final results indicate that: by using the wind power interval method, it is difficult to distinguish abnormal wind speeds. This method can improve data quality and enhance the accuracy of wind speed and power. According to statistics, the data integrity has been significantly improved from 68.7%-92.5% to 90.1%-92.7%. Above all, the data integrity has been significantly improved. This method achieves mutual calibration between wind speed and power through the wind power probability interval recognition method. It provides fundamental support data for predicting and regulating the power generation of wind farms. It provides guidance and a basis for more refined meteorological service products for power and other related sectors.

    參考文獻
    相似文獻
    引證文獻
引用本文

郝玉珠,石嵐,賈曉紅.風電機組異常風速的識別和修正方法研究[J].氣象科技,2024,52(5):644~651

復制
分享
文章指標
  • 點擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2023-08-23
  • 定稿日期:2024-07-22
  • 錄用日期:
  • 在線發布日期: 2024-10-30
  • 出版日期:
您是第位訪問者
技術支持:北京勤云科技發展有限公司
午夜欧美大片免费观看,欧美激情综合五月色丁香,亚洲日本在线视频观看,午夜精品福利在线
>