綜合天氣相似分析方法及其氣象預報服務應用
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

中國氣象局揭榜掛帥項目(CMAJBGS202217),中國氣象局氣象能力提升聯合研究專項(22NLTSY011)資助


A Comprehensive Weather Similarity Analysis Method and Its Application in Meteorological Forecast Services
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    為改進傳統“切片”式天氣形勢相似分析方法存在的不同切片相似結果不一致、預報穩定性欠佳問題,借鑒大數據思維,將天氣系統視為一個由高中低層大氣相互配合、靜力熱力動力條件相互影響的綜合體,以多種氣象要素再分析格點資料為基礎,采用機器學習PCA方法對原始數據進行降維、濃縮,經歸一化處理后構建出適于綜合天氣相似分析的樣本衍生特征因子矩陣;然后使用KNN算法計算樣本間各特征維度的相似距離、并結合方差貢獻率賦予其相應的權重,最終按綜合相似距離大小排序給出目標樣本在歷史天氣形勢庫中的綜合最相似序列,從而實現對傳統相似天氣預報方法的升級改進。對比分析和測試應用表明,該方法可提供多要素、多層次“立體”綜合相似下的一致性結論,有助于預報員更好地理解天氣系統結構和演變過程、進而更準確地研判可能發生的相關天氣現象,在精細化氣象預報服務方面有良好的應用前景。在2023年以來的幾次廣西區域性極端降水氣象預報服務中,該方法取得了較為顯著的應用效果。

    Abstract:

    This article introduces a novel method that draws on big data thinking, treating the weather system as a comprehensive entity in which the interactions of the high, middle, and low-level atmospheres, as well as the influences of static, thermal, and dynamic conditions, are considered. It utilises a novel approach to comprehensive similarity assessment through situation field analysis, using derived data from numerical weather models and reanalysed grid data of various meteorological elements as its fundamental characteristics. The approach begins by employing the machine learning Principal Component Analysis (PCA) method to condense the features of the original grid field data, making it adaptable to the resource processing capabilities of conventional business platforms. Subsequently, the derived dimensional feature data of different meteorological elements at various spatial levels are normalised to ensure a balanced effect when participating in similarity calculations. The constructed sample-derived feature factor matrix, suitable for comprehensive weather similarity analysis, undergoes calculation of the similarity distance for each feature dimension among the samples. Based on the variance contribution rates of the initial field information contained in the data from different “principal component” dimensions, different weights are assigned to the similarity distance results of each dimension, yielding a comprehensive similarity distance. Finally, using the K-Nearest Neighbours (KNN) algorithm, the method provides the most comprehensive similar sequence in the historical weather situation database for the target sample, thus upgrading and improving traditional methods of similar weather forecasting. This method provides a multi-element and multi-level “stereoscopic” comprehensive similarity, aiding forecasters in better understanding the structure and evolution of weather systems and, consequently, more accurately assessing the possible occurrence of related weather phenomena. Comparative analysis and testing applications indicate that the results of comprehensive similarity analysis are superior to traditional “sliced” similarity analysis, which only targets single meteorological elements or altitude levels, particularly in terms of matching critical weather system positions and strength features. It resolves issues such as inconsistent results of similar weather situation analysis for different “slices” and poor forecast stability. This method provides more direct and efficient assistance in weather analysis and forecasting and holds promising prospects for refined meteorological forecasting services. In several instances of extreme precipitation meteorological forecasting services in the Guangxi region since 2023, this method achieves significant application effectiveness.

    參考文獻
    相似文獻
    引證文獻
引用本文

李宇中,董良淼,梁存桂,劉國忠,覃月鳳,黃伊曼.綜合天氣相似分析方法及其氣象預報服務應用[J].氣象科技,2024,52(4):571~582

復制
分享
文章指標
  • 點擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2023-08-08
  • 定稿日期:2024-03-08
  • 錄用日期:
  • 在線發布日期: 2024-08-28
  • 出版日期:
您是第位訪問者
技術支持:北京勤云科技發展有限公司
午夜欧美大片免费观看,欧美激情综合五月色丁香,亚洲日本在线视频观看,午夜精品福利在线
>