MODE降水檢驗評價指標改進及卷積半徑應用
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家自然科學基金項目(42165001)、中國氣象局復盤總結專項(FPZJ2023117)和廣東省區域數值天氣預報重點實驗室開放基金課題(J201802)資助


Improvement of MODE Precipitation Evaluation Index and Application of Convolution Radius
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    基于對象的診斷檢驗方法(MODE)受降水臨界值、卷積半徑、屬性權重等參數的影響,合理選取卷積半徑并準確表征預報場與觀測場之間的空間相似度決定了MODE的應用效果。本文基于2020年夏季貴州54個降水個例,以多源融合降水(CMPA)作為實況,使用MODE和FSS評分(Fractions Skill Score)對中國氣象局廣東快速更新同化數值預報系統(CMAGD)24 h日降水預報進行空間檢驗。結果表明:卷積半徑過小易造成MODE提取降水對象過多,而卷積半徑過大則導致局部降水信息丟失,無法從降水場中提取到降水對象。不同卷積半徑下計算的最大相似度中值(MMI)存在突變。在MMI基礎上引入面積權重構造面積平均最大相似度(AMMI)。AMMI不受提取降水對象個數的影響,較MMI更具有穩定性,用于表征降水場之間的整體空間相似程度更為合理。根據對象總面積隨卷積半徑的變化將降水分為大范圍降水和局部降水2類。大范圍降水平均總面積隨著卷積半徑的增加而增加,AMMI隨卷積半徑變化不大。隨著卷積半徑的增加,局部降水平均總面積減小,平均AMMI有所減小。局部降水對卷積半徑選取較為敏感,以觀測場對象面積變化不超過10%的最大半徑作為卷積半徑有助于保留降水場大部分信息。

    Abstract:

    The Method for ObjectBased Diagnostic Evaluation (MODE) has been widely applied in spatial evaluation in recent years. MODE is affected by many parameters such as precipitation critical value, convolution radius and attribute weight; the application effect of MODE depends on reasonable selection of convolution radius and accurate characterisation of spatial similarity between forecast and observation fields. Taking the CMPA as observation, MODE and FSS (Fractions Skill Score) are used to test the CMAGD 24 h daily precipitation forecast based on 54 precipitation cases in Guizhou in this paper. The number of objects extracted by MODE falls with convolution radius; too small convolution radius easily results in too many precipitation objects extracted; if the convolution radius is too large, local precipitation information will be lost and precipitation objects cannot be extracted from the precipitation field. Therefore, an appropriate convolution radius should be adopted to extract precipitation objects with MODE. It is found that the MMI (the Median Maximum Interest Value) of MODE is very sensitive to the convolution radius change and even has a mutation, so it cannot stably represent the overall spatial similarity of precipitation fields. Based on the MMI, the area weight is introduced to construct the AMMI (the Area Mean of Maximum Interest Value) to distinguish the contribution of different objects. The AMMI is more reasonable to characterise the overall similarity of the forecast and observation precipitation fields, and is unaffected by the number of precipitation objects, which is more stable than the MMI. In general, AMMI is larger than FSS, and the difference in the change of AMMI and FSS with spatial scale is due to the different calculation basis. According to the change of object’s total area with the convolution radius, precipitation can be divided into largearea precipitation and local precipitation. The average total area of largescale precipitation grows with the convolution radius, while AMMI has little change. As the convolution radius goes up, the average total area and AMMI of local precipitation go down. Taking the maximum convolution radius which makes the total area change not exceeding 10% in the observation field as the critical radius, there is a large difference between the probability of the critical radius of largescale precipitation and local precipitation from 0.05° to 0.4°. Local precipitation is sensitive to the selection of convolution radius and determining the convolution radius with critical radius is helpful to retain most of the information of the precipitation field.

    參考文獻
    相似文獻
    引證文獻
引用本文

楊富燕,陳百煉,彭芳,胡欣欣,李彥霖. MODE降水檢驗評價指標改進及卷積半徑應用[J].氣象科技,2024,52(2):218~227

復制
分享
文章指標
  • 點擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2023-04-06
  • 定稿日期:2023-11-27
  • 錄用日期:
  • 在線發布日期: 2024-04-29
  • 出版日期:
您是第位訪問者
技術支持:北京勤云科技發展有限公司
午夜欧美大片免费观看,欧美激情综合五月色丁香,亚洲日本在线视频观看,午夜精品福利在线
>