基于年際增量法的廣西6月月降水量預測
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家自然科學基金(42065004)、廣西自然科學基金(2023GXNSFAA026511)和廣西氣象科技研究計劃項目(桂氣科2023Z05)共同資助


Research on Monthly Precipitation Prediction in Guangxi in June Based on Interannual Incremental Method
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    利用廣西87個氣象站6月月平均降水量及NCEP/NCAR再分析資料,通過普查1960—2021年廣西6月月降水量年際增量與前期500 hPa位勢高度場的相關性,選取影響廣西6月降水異常相關性較高的前期預測因子,研究其主要影響機制,并采用模糊神經網絡與熵度量相結合的方法構建月降水年際增量的集合預報模型,對預測模型進行1960—2013年的擬合檢驗和2014—2021年的獨立樣本預報檢驗。結果發現,該模型的預測準確率較高,獨立樣本的回報年份同號率為87.5%,擬合平均絕對誤差為26.64 mm,擬合平均相對誤差為9.06 %,預報效果優于利用逐步回歸方法構建的預測模型,而且模型性能比較穩定,具有較好的業務應用前景。

    Abstract:

    By employing the monthly average precipitation from 87 stations in Guangxi in June and NCEP/NCAR reanalysis data, the correlation between the interannual increment of monthly precipitation in Guangxi in June and the 500 hPa geopotential height field in the previous period from 1960 to 2021 is under investigation. Selecting the precursor signals that impact the precipitation anomaly in Guangxi in June occurs as part of this investigation. An ensemble forecasting model of the interannual increment of monthly precipitation, constructed by combining the fuzzy neural network and entropy metric method, is in continual operation. The cross-check of the prediction model from 1960 to 2013 and the independent sample test from 2014 to 2021 happen regularly. Results display a relative high prediction accuracy of the model, with a correlation coefficient of 0.93 between the predicted and actual values of the interannual increments of the return sample, passing the significance test of α=0.001. There is a return-year homogeneity rate of 87.5%, a fitted mean absolute error of 26.64 mm, and a fitted mean relative error of 9.06 %. This model is more stable than the prediction model built by the traditional stepwise regression method. For this reason, the entropy metric-fuzzy neural network ensemble prediction model sees better prospects for operational forecasting of short-term climate drought and flood trends.

    參考文獻
    相似文獻
    引證文獻
引用本文

蔡悅幸,史旭明,陸虹,金龍,羅小莉.基于年際增量法的廣西6月月降水量預測[J].氣象科技,2024,52(1):66~75

復制
分享
文章指標
  • 點擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2022-11-29
  • 定稿日期:2023-07-13
  • 錄用日期:
  • 在線發布日期: 2024-02-29
  • 出版日期:
您是第位訪問者
技術支持:北京勤云科技發展有限公司
午夜欧美大片免费观看,欧美激情综合五月色丁香,亚洲日本在线视频观看,午夜精品福利在线
>