基于風云四號靜止氣象衛星的局地對流智能化預警模型及應用
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家自然科學基金(41975031、42175086、U2142201)、中山大學高?;緲I務費(22qntd1913)、廣東省氣候變化與自然災害研究重點實驗室經費(2020B1212060025)、風云衛星應用先行計劃項目(FYAPP2022.0113)資助


SWIPE Based on Fengyun-4 Geostationary Meteorological Satellite and Its Applications
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    強對流等災害性天氣給人民生活和社會經濟發展造成了嚴重影響,準確理解強對流發生的機理及提高其預報效果仍然是具有挑戰性的工作。綜合利用我國自主研發的新一代地球靜止軌道氣象衛星風云四號高時空分辨率觀測數據和中國氣象局全球數值預報(China Meteorological Administration- Global Forecast System, CMA-GFS)格點化產品,研究局地對流發生前大氣環境場的特征和關鍵影響因子的變化。分析表明:衛星觀測得到的云頂凍結信息以及表征大氣的不穩定性、水汽含量等數值模式變量是預測局地對流發生的重要因子。利用面積重疊法和光流法對云團進行連續追蹤,采用機器學習技術建立了中國區域局地對流發生和強度分級(弱、中、強)預警模型2.0版本(Storm Warning In Pre-convective Environment Version 2.0, SWIPE-V2.0),實現了局地對流的智能化預警。獨立檢驗結果表明:模型對6個不同分區的雨季8 mm/h以下強度降水相關的對流判識準確率在0.5~0.85,對8 mm/h以上強度降水相關的對流判識準確率在0.69~0.91之間,具有較好的提前預警效果和實際應用價值。目前,SWIPE-V2.0已投入實時應用。

    Abstract:

    Local severe convective storms significantly impact people’s lives and socio-economic development. Understanding the mechanism of severe convective storms and predicting the occurrence and development of local severe storms remains challenging. We investigate local severe convective storms’ environmental and thermodynamic characteristics in pre-convection environments by combining observations from China’s new-generation geostationary satellites (FY-4 series), which offer high spatial-temporal resolution, with numerical weather forecast products from the China Meteorological Administration (CMA) global forecast system (CMA-GFS). Furthermore, we explore how their changes impact the future development intensity of local convection. Results show a close association between cloud top cooling information from satellite observations and numerical prediction model variables, such as atmospheric instability and water vapour content, with convection storm occurrence and intensity. Changes in these factors closely relate to the future development intensity of local convection. The Storm Warning In Pre-convective Environment Version 2.0 (SWIPE-V2.0) system aims to predict the occurrence and intensity (weak, medium, and strong) of local severe storms in China. Established using machine-learning techniques, SWIPE-V2.0 employs the brightness temperature threshold method and area threshold method to identify the local convective cloud. Meanwhile, it uses the overlapping and optical flow methods to track the movement of the local convective cloud. The machine-learning model uses the CLDAS (Global Land Data Assistance System) data of the multi-source precipitation fusion dataset, obtained half an hour to one hour after the cloud cluster, as the training tag. Independent validation results reveal SWIPE-V2.0’s strong performance in early warning for local convective storms, with recognition rates of 0.5-0.85 for cases with precipitation below 8 mm/h and 0.69-0.91 for cases with precipitation above 8 mm/h in the rainy season across six different regions. In the non-rainy seasons, across the same regional spread, recognition rates are 0.53-0.98 for cases with precipitation below 8 mm/h and 0.77-0.99 for cases with precipitation above 8 mm/h. Early warning results from SWIPE-V2.0 on real-time local convection systems demonstrate its potential for near real-time applications, while also indicating its useful role in understanding the environmental factors associated with local severe storms across various weather regimes. Currently, we are utilising SWIPE-V2.0 in real-time applications.

    參考文獻
    相似文獻
    引證文獻
引用本文

李俊,閔敏,李博,韋曉澄,劉子菁,鄭永光,張小玲,覃丹宇,孫逢林,馬錚,王立志.基于風云四號靜止氣象衛星的局地對流智能化預警模型及應用[J].氣象科技,2023,51(6):771~784

復制
分享
文章指標
  • 點擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2022-11-14
  • 定稿日期:2023-09-12
  • 錄用日期:
  • 在線發布日期: 2023-12-28
  • 出版日期:
您是第位訪問者
技術支持:北京勤云科技發展有限公司
午夜欧美大片免费观看,欧美激情综合五月色丁香,亚洲日本在线视频观看,午夜精品福利在线
>