基于機器學習技術的黃山風景區及周圍雷電臨近預報方法
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家重點研發計劃項目(2018YFC1507802),安徽省氣象局創新發展專項(CXM202207)資助


Lightning Nowcasting Method in Huangshan Scenic Spot and Its Surroundings Based on Machine Learning Algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    為探究影響山岳型景區雷電發展的關鍵因素,實時掌握黃山風景區及周圍雷電發展趨勢,采用多普勒天氣雷達、氣象探空、閃電定位等多種監測數據,根據雷電發生基本物理原理,從系統強度、旺盛程度和移動趨勢3個方面提取雷達回波特征作為關鍵預報因子,基于多種機器學習算法建立了雷電臨近預報模型,結果表明:隨機森林(RF)、邏輯回歸(LR)、K-臨近(KNN)、貝葉斯(GNB)、支持向量機(SVM)5種機器學習算法均對雷電具有一定臨近預報能力,RF的TS最高,SVM漏報率最低,LR空報率最低;在RF算法中雷暴系統強度和發展旺盛程度兩類因子起主要作用,其中作用最大的是雷暴系統強度中-20 ℃層高度雷達基本反射率,其次是0 ℃層以上回波厚度。

    Abstract:

    Lightning disasters are now recognised as one of the top ten most severe natural calamities, being particularly frequent in mountainous areas. The continuous growth of tourism has led to significant impacts on tourists and cable cars, especially in mountainous scenic areas, where equipment like cable cars are highly sensitive to lightning. To investigate the key factors influencing lightning development in these regions and to promptly understand the trends in lightning activity in and around the Huangshan Scenic Area, we are leveraging multiple monitoring data, such as Doppler weather radar, meteorological soundings, and lightning detection. In this study, we are building and evaluating multiple lightning nowcasting models using different machine learning algorithms. The models are based on the non-inductive charging mechanism in the thunderstorm and the characteristics of Doppler weather radar echo. We are extracting echo characteristics of the Doppler weather radar as key forecasting factors, focusing on the intensity, vigour, and movement trends of the thunderstorm system. By comparing false alarm rates, missed alarm rates, and TS scores of various machine learning algorithms, we are selecting the most suitable forecast method for mountainous scenic areas. Our evaluation results reveal that the Random Forest (RF), Logistic Regression (LR), K-Nearest Neighbour (KNN), Gaussian Naive Bayes (GNB), and Support Vector Machine (SVM) algorithms all have certain nowcasting capabilities for lightning. The RF algorithm scores highest in TS scoring, the SVM has the lowest missed alarm rate, and LR has the lowest false alarm rate. Among these, the intensity and vigorous development of the thunderstorm system play a pivotal role in the RF algorithm, with the radar base reflectivity at the -20 ℃ layer height in the thunderstorm system intensity having the most influence, followed by the radar echo thickness above the 0 ℃ layer. Taking an example on 29 August 2021, when a large-scale intense thunderstorm occurred in and around the Huangshan Scenic Area in the afternoon. Employing the RF method resulted in a false alarm rate of 0.425, a missed alarm rate of 0.378, and a TS score of 0.426, indicating good forecasting performance in the area.

    參考文獻
    相似文獻
    引證文獻
引用本文

姚葉青,王傳輝,慕建利,張蕾,王麗娟.基于機器學習技術的黃山風景區及周圍雷電臨近預報方法[J].氣象科技,2023,51(5):747~754

復制
分享
文章指標
  • 點擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2022-08-25
  • 定稿日期:2023-05-25
  • 錄用日期:
  • 在線發布日期: 2023-11-01
  • 出版日期:
您是第位訪問者
技術支持:北京勤云科技發展有限公司
午夜欧美大片免费观看,欧美激情综合五月色丁香,亚洲日本在线视频观看,午夜精品福利在线
>