基于集合預報極端天氣預測指數的浙江分類強對流預報模型
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

浙江省氣象局重點項目(2021ZD28)資助


Research on Classified Severe Convection Weather Forecast in Zhejiang Province Based on Extreme Forecast Index of Ensemble Prediction
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    利用2016—2021年ECWMF集合預報資料、浙江自動站實況資料等,計算浙江短時強降水、雷暴大風和冰雹等強對流天氣相關物理量的極端天氣預報指數(EFI:Extreme Forecast Index),分析EFI分布特征,并構建了分類強對流預報模型。結果表明:強對流天氣與物理量的EFI有密切聯系,發生短時強降水時,對流有效位能、整層可降水量、850 hPa與500 hPa溫差和位溫差的EFI較大,而垂直風切變的EFI為負值,因而較小的垂直風切變更有利于出現極端降水;發生雷暴大風和冰雹時,對流有效位能、850 hPa與500 hPa溫差和位溫差以及850 hPa溫度露點差的EFI較大,700 hPa露點溫度的EFI為負值,與上層干冷下層暖濕的有利層結條件有關。利用支持向量機多分類方法,將強對流天氣相關物理量的EFI作為特征值開展訓練,構建的預報模型對于非局地強對流天氣有較好的預報效果,其中短時強降水的誤判率明顯低于雷暴大風。

    Abstract:

    In this paper, the Extreme Forecast Index (EFI) related to short-time heavy precipitation, thunderstorm gale and hail in Zhejiang is calculated using ECWMF ensemble prediction data and Zhejiang automatic station observation data from 2016 to 2021. The characteristics of EFI are analyzed, and the forecast model is built. Results show that severe convective weather is closely related to the EFI of physical quantities. When short-time heavy precipitation occurs, the physical quantities with larger EFI are convective effective potential energy, whole layer precipitable water, temperature difference and potential temperature difference between 850 hPa and 500 hPa. While the EFI of vertical wind shear is negative, indicating that the smaller vertical wind shear is more conducive to the occurrence of extreme precipitation. When thunderstorms and hailstorms occur, the physical quantities with a larger EFI index are convective effective potential energy, temperature difference and potential temperature difference between 850 hPa and 500 hPa, and temperature dew point difference of 850 hPa. EFI of dew point temperature of 700 hPa is negative, related to the favourable stratification condition of the dry and cold upper layer with the warm and wet lower layer. By using the multi-classification method of the Support Vector Machine, the EFI of the physical quantities related to the strong convective weather are used as the characteristic value to carry out training. The prediction model is effective for nonlocal severe convective weather, and the misjudgment rate of short-term heavy precipitation is obviously lower than that of thunderstorm gale.

    參考文獻
    相似文獻
    引證文獻
引用本文

錢卓蕾,婁小芬,沈曉玲,沈哲文.基于集合預報極端天氣預測指數的浙江分類強對流預報模型[J].氣象科技,2023,51(4):582~594

復制
分享
文章指標
  • 點擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2022-06-01
  • 定稿日期:2023-02-03
  • 錄用日期:
  • 在線發布日期: 2023-08-29
  • 出版日期:
您是第位訪問者
技術支持:北京勤云科技發展有限公司
午夜欧美大片免费观看,欧美激情综合五月色丁香,亚洲日本在线视频观看,午夜精品福利在线
>