基于雷達組網拼圖和XGBoost的雷達定量降水估測
DOI:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

廣西高校中青年教師科研基礎能力提升項目(2022KY0963)、廣西科技廳重點研發計劃項目(桂科 AB21196041)、廣西職業教育教學改革研究重點項目(GXGZJG2022A001)資助


Radar Quantitative Precipitation Estimation Based on Radar Mosaic and XGBoost Algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    針對傳統方法采用天氣雷達進行強降水的定量估測存在較大偏差問題,論文以1 h累計雨量為估測對象,基于雷達組網拼圖資料,采用XGBoost(eXtreme Gradient Boosting)算法,建立新的雷達估測降水模型。該模型設計以前1 h的雷達組合反射率因子作為輸入,進一步采用若干個剔除異常樣本的策略有效清除建模樣本中的部分噪聲,更好地構建了雷達組合反射率與估測對象之間的非線性映射關系。在32萬個獨立檢驗樣本的估測結果中,其均方根誤差(RMSE)為6.04 mm、平均絕對誤差(MAE)為3.50 mm、預報偏差(BIAS)為1.05;與目前業務系統上使用的Z-R(300,1.4)關系方法相比,前者的RMSE和MAE分別下降了20.6% 和 10.3%,而BIAS指標則顯示后者對降水量級的估測明顯低估。進一步對小時雨強大于10 mm樣本的統計結果表明,新方案的RMSE、MAE以及TS評分均大幅優于ZR(300,1.4)關系方法,可進行實際業務應用。

    Abstract:

    To address the problem of large bias in the quantitative estimation of heavy precipitation by traditional methods using weather radar, the thesis uses the 1-hour cumulative rainfall as the estimation object, a new model for radar precipitation estimation based on radar mosaic data and XGBoost (eXtreme Gradient Boosting) algorithm. The model is designed with the radar combined reflectance factor of the previous hour as the input factor, and further employs several rejection strategies of anomalous samples to effectively remove some of the noise from the modelling samples, thus better constructing a non-linear mapping relationship between the radar combined reflectance and the estimated object. The root mean square error (RMSE) is 6.04 mm, the mean absolute error (MAE) is 3.50 mm, and the forecast bias (BIAS) is 1.05 for the 320,000 independently tested samples; compared to the Z-R(300,1.4) relational method currently used on operational systems, the RMSE and MAE of the former decrease by 20.6% and 10.3% respectively, while the BIAS indicators show a significant underestimation of precipitation magnitude by the latter. For samples with hourly rainfall intensity greater than 10 mm, further statistical results show that the new scheme’s RMSE, MAE and TS scores are substantially better than the Z-R (300,1.4) relational method for practical operational applications.

    參考文獻
    相似文獻
    引證文獻
引用本文

趙華生,李曉靜.基于雷達組網拼圖和XGBoost的雷達定量降水估測[J].氣象科技,2023,51(3):338~345

復制
分享
文章指標
  • 點擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2022-07-18
  • 定稿日期:2023-02-14
  • 錄用日期:
  • 在線發布日期: 2023-06-29
  • 出版日期:
您是第位訪問者
技術支持:北京勤云科技發展有限公司
午夜欧美大片免费观看,欧美激情综合五月色丁香,亚洲日本在线视频观看,午夜精品福利在线
>