大氣背景場對云中液態水反演結果影響
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家重點研發計劃課題(2019YFC1510301)、天津市自然科學基金面上項目(20JCYBJC00010)共同資助


Effect of Atmospheric Background Field on Retrieval Results of Liquid Water Path in Clouds
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    基于機載對空微波輻射計GVR討論應用BP神經網絡算法反演液態水路徑時大氣背景資料對反演結果的影響,為合理選擇訓練樣本獲取更準確的液態水觀測數據提供依據,同時有利于了解反演算法的探測適用范圍。文章選擇多個歷史探空資料,按照歷史資料時間序列長度、季節和區域進行分類,建立不同類樣本集訓練BP神經網絡獲取反演方程,選擇樣本檢驗集模擬計算每類反演方程的反演精度,通過反演精度對比分析大氣背景資料差異在反演云中液態水時造成的影響。結果表明訓練樣本的大氣背景時空差異影響反演結果,在一定時間范圍內增加歷史資料序列長度可以減小大氣背景差異對反演誤差的影響,但當時間序列長度到達一定程度時,增加歷史樣本量將不再是提高反演精度的一種有效措施。季節分類可以減小大氣背景差異對反演誤差的影響,但在實際應用中,資料分類帶來樣本容量減小,對一定時間序列長度的歷史資料,按照季節進行分類并不能有效提高垂直累積液態水的反演精度。

    Abstract:

    The influence of atmospheric background data on liquid water path retrieval results is discussed based on the airborne GVR and BP neural network algorithm. It provides a basis for reasonably selecting training samples to obtain more accurate liquid water observation data and is beneficial to understand the detection scope of the retrieval algorithm. Multiple historical sounding data are selected and classified by historical data time series length, season, and region. Different training sample sets are established to train BP neural networks to obtain the corresponding retrieval equations. The sample test set is selected to calculate the retrieval accuracy of each type of retrieval equations. The influence of atmospheric background data difference on liquid water path retrieval results is analyzed by retrieval accuracy comparison. The results show that the spatial and temporal differences in the atmospheric background of the training samples influence the retrieval results. The effect of atmospheric background differences on the retrieval error can be reduced by increasing the length of historical-sounding data. However, it does not work when the time series length reaches a certain extent. Seasonal classification can reduce the impact of atmospheric background differences on retrieval error, but data classification reduces the sample size in practice. For the historical data of a certain time series length, classification according to the season cannot effectively improve the retrieval accuracy of the liquid water path.

    參考文獻
    相似文獻
    引證文獻
引用本文

王婉,聶皓浩,陳超,郭曉軍.大氣背景場對云中液態水反演結果影響[J].氣象科技,2023,51(2):175~182

復制
分享
文章指標
  • 點擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2022-05-06
  • 定稿日期:2023-01-30
  • 錄用日期:
  • 在線發布日期: 2023-04-27
  • 出版日期:
您是第位訪問者
技術支持:北京勤云科技發展有限公司
午夜欧美大片免费观看,欧美激情综合五月色丁香,亚洲日本在线视频观看,午夜精品福利在线
>