基于機器學習技術的逐時霧事故判別氣象模型
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家重點研發計劃項目(2020YFB1600100、2018YFC1505503)和中國氣象局公共氣象服務中心創新基金項目(K2021002)資助


An Hourly Meteorological Model for Fog Accident Discriminant Based on Machine Learning Technology
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    為進一步提高霧天交通安全氣象保障精細化能力,以江蘇、安徽高速公路霧事故多發路段為例,利用2012—2018年事故信息與氣象資料,建立一種基于變量選擇和特征提取的逐時霧事故判別支持向量機模型。模型參照遞歸特征消除思路選擇事故發生時間、地理位置、氣象環境等重要變量,使用主成分分析提取重要變量的主要特征,并以徑向基為核函數、以網絡搜索確定最優參數。結果表明:結合重要變量選擇和主成分分析的支持向量機混合模型能夠成功識別出訓練集81.4%和測試集83.0%的事故樣本,AUC分數均為0.946;判別效果優于支持向量機單獨算法,以及僅基于重要變量選擇或主成分分析的支持向量機算法;3個典型實例分析也說明該模型對于階段性或持續性大霧天氣下的交通事故發生有一定判識與警示意義。

    Abstract:

    In order to further improve the ability of refined meteorological services for traffic safety in foggy weather, this study takes Jiangsu and Anhui expressway sections where frequent fog-caused accidents happen as examples, with the application of the disaster information and weather data from 2012 to 2018 to establish a support vector machine hybrid model for hourly fog accident detection based on variable selection and feature extraction. The model uses the recursive feature elimination method to select the important variables from accident time, geographic location, and meteorological environment, and then extracts the main features of the important variables by principal component analysis. The radial basis is used as the kernel function, and the optimal parameters are determined by network search. The results show that this support vector machine hybrid model can successfully identify 81.4% of the accident samples in the training set and 83.0% of the test set, and the AUC scores are both 0.946. The ability to identify fog accidents is superior to the support vector machine algorithm and the support vector machine algorithm based only on main variable selection or principal component analysis. The analysis of three typical examples also shows that the support vector machine hybrid model has certain identification and warning significance for the occurrence of traffic accidents under periodic or persistent foggy weather.

    參考文獻
    相似文獻
    引證文獻
引用本文

宋建洋,田華,郜婧婧,王志,李藹恂,陳運.基于機器學習技術的逐時霧事故判別氣象模型[J].氣象科技,2023,51(1):149~156

復制
分享
文章指標
  • 點擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2022-02-25
  • 定稿日期:2022-08-22
  • 錄用日期:
  • 在線發布日期: 2023-03-03
  • 出版日期:
您是第位訪問者
技術支持:北京勤云科技發展有限公司
午夜欧美大片免费观看,欧美激情综合五月色丁香,亚洲日本在线视频观看,午夜精品福利在线
>