金沙江下游多種面雨量集成預報方法的對比分析
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家自然科學基金(42175002,42075013),金沙江下游梯級水電站氣象預報關鍵技術研究及系統建設項目(JG/20015B),高原與盆地暴雨旱澇災害四川省重點實驗室科技發展基金(SCQXKJYJXMS202117)資助


Comparative Analysis of Multiple Ensemble Forecasting Methods of Areal Rainfall in Lower Reaches of Jinsha River
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    集成方法有利于提高降水要素預報的準確性和可預報性。本文基于格點實況資料和智能網格預報、西南區域數值預報、ECMWF模式預報、GRAPES模式預報產品,以面雨量為研究對象,采用多元回歸法、BP神經網絡法、評分權重法、加權集成預報法和算術平均法,得到集成面雨量預報,再運用平均絕對誤差、模糊評分、正確率、TS評分、偏差分析等方法,對2020年4—10月金沙江下游面雨量預報效果進行對比分析。結果表明:多元回歸集成法和BP神經網絡法的預報效果總體上優于其他幾種集成方法。在考慮流域面雨量的預報量級時,下游可以采用預報量級較小的模式和集成方法。集成后偏差百分比均有降低,且多元回歸法和BP神經網絡法對預報量級較小的模式有矯正作用。在面雨量有無、小雨和中雨預報中,多元回歸法集成效果較好,在大雨量級預報中,BP神經網絡法集成效果較好。這些結論可為流域面雨量預報提供參考借鑒。

    Abstract:

    The ensembled method is beneficial in improving the accuracy and predictability of precipitation element forecasts. This paper is based on grid data and smart grid forecasts, southwestern regional numerical forecasts, ECMWF model forecasts and GRAPES model forecast data, with area rainfall as the research object, using the multiple regression method, BP neural network method, scoring weight method, weighted ensembled forecasting method and the arithmetic average method to obtain the ensembled areal rainfall forecast, and then the average absolute error, fuzzy score, correct rate, TS score, deviation analysis and other methods are used to compare and analyze the forecast effect of the lower reaches of the Jinsha River from April to October 2020. The results show that the prediction effect of the multiple regression method and the BP neural network method are generally better than those of the other ensemble methods. When considering the forecast magnitude of the area rainfall in the basin, the model and ensemble method with smaller forecast magnitude can be employed downstream. After ensemble, the deviation percentages are reduced, and the multiple regression method and the BP neural network method have a corrective effect on the models with smaller forecast magnitudes. In the forecast of whether there is precipitation, light rain and moderate rain, the multiple regression method has a better ensemble effect. In the heavy rainfall forecast, the BP neural network method has a better ensemble effect. These conclusions can provide references for future surface rainfall forecasting in the river valley.

    參考文獻
    相似文獻
    引證文獻
引用本文

周芳弛,李國平,宋雯雯,游家興.金沙江下游多種面雨量集成預報方法的對比分析[J].氣象科技,2023,51(1):85~93

復制
分享
文章指標
  • 點擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2021-12-05
  • 定稿日期:2022-10-28
  • 錄用日期:
  • 在線發布日期: 2023-03-03
  • 出版日期:
您是第位訪問者
技術支持:北京勤云科技發展有限公司
午夜欧美大片免费观看,欧美激情综合五月色丁香,亚洲日本在线视频观看,午夜精品福利在线
>