基于人工神經網絡的沿海風速多步預測研究
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

山東省自然科學基金(ZR2021MD062)、青島市氣象局科技項目(2021qdqxq06)資助


Research on Application of Artificial Neural Network for Sea Surface Wind Speed Forecasting
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    基于氣象歷史觀測資料,將長短期記憶網絡LSTM方法和Transformer模型結合提出了混合短期風速多步預測模型BLSTM-TRA。以山東半島南部沿海6個臺站為研究區域,通過氣象臺站觀測數據構建數據集。經與2018年ECMWF模式6 h預報結果對比分析,得出如下結論:構建的BLSTM-TRA多步預測模型可大幅度降低風速誤差,BLSTM-TRA的1 h單步預測結果和ECMWF預報模式結果對比,其RMSE平均降低了58.9%,MAE平均降低了63.2%;風速誤差和大風統計過程分析發現,BLSTM-TRA模型具有一定的抗干擾能力,可以抓住短時大風等敏感信息,對于大風預報結果明顯優于ECWMF模式和傳統LSTM模型。

    Abstract:

    Accurate estimation of wind speed is essential for many meteorological applications. A novel shortterm wind speed prediction method of the BLSTM-TRA model is proposed by combining the Transformer model and LSTM model. Six stations along the southern coast of the Shandong Peninsula are selected as the research area. After comparing and analyzing the 6 h prediction results of the 2018 ECMWF model, the following conclusions are drawn: The BLSTM-TRA multi-step prediction model can reduce the error of wind speed prediction. Compared with the ECMWF prediction model results, the RMSE and MAE of BLSTM-TRA are decreased by 58.9% and 63.2% on average. The analysis of wind speed error and wind statistical process shows that the BLSTM-TRA model has a certain anti-interference ability and can capture the sensitive information of short-term wind, etc., which is obviously better than the ECWMF model and traditional LSTM model for wind prediction.

    參考文獻
    相似文獻
    引證文獻
引用本文

劉志豐,丁鋒.基于人工神經網絡的沿海風速多步預測研究[J].氣象科技,2022,50(6):851~858

復制
分享
文章指標
  • 點擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2021-07-08
  • 定稿日期:2022-07-22
  • 錄用日期:
  • 在線發布日期: 2022-12-30
  • 出版日期:
您是第位訪問者
技術支持:北京勤云科技發展有限公司
午夜欧美大片免费观看,欧美激情综合五月色丁香,亚洲日本在线视频观看,午夜精品福利在线
>