基于長短期記憶神經網絡的風速超短期快速滾動預報技術
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

浙江省氣象科技青年項目(2021QN07)、甘肅省氣象局科研項目(Ms2022-22)共同資助


Research on Ultra Short-Term Fast Rolling Prediction Technology of Wind Speed Based on LSTM Neural Network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    利用甘肅省某風電場2017—2020年測風數據,基于長短期記憶神經網絡(LSTM)模型,通過評估不同輸入數據和模型時間窗口長度下的預報精度,設計一套適用于風電場的風速超短期快速滾動預報方案。結果表明:通過輸入不同的特征變量,在風速的超短期(未來4 h內)預報中,風速自身變化起主導作用,模型輸入變量中只加入各高度層的風速能得到更好的模擬效果。通過評估LSTM模擬時間窗口長度L對模擬效果的影響,當時間窗口長度L≤24 h時,模擬效果較好,說明超短期風速變化主要和風速自身臨近時刻的變化有關;當L>24 h時,模擬效果快速下降,說明過長的L會削弱模擬能力,降低模擬精度。 通過分析LSTM在未來4 h內的風速模擬能力,發現隨著預報時長的增加,模擬精度逐步下降,但在未來2 h內的風速均方根誤差RMSE均小于2 m·s-1,結果較為理想,且該方法對計算資源要求不高,經濟實用性強,在業務中具有較高的應用潛力。

    Abstract:

    Using the observation data of a certain wind farm in Gansu, an ultra short-term fast rolling wind speed forecast method is proposed based on the Long Short-Term Memory (LSTM) neural network model by evaluating the forecast accuracy under different input variables and model time window lengths. The results show that the change in wind speed itself plays a leading role in the ultra short-term wind speed forecast. Better simulation results can be obtained when input variables only include the wind speed data at different altitudes. By evaluating the impact of time window lengthL of LSTM on simulation capability, it is found that when L≤24 h, the model works well, which means that the change of ultra short-term wind speed is mainly related to the change of its own near time. When L>24 h, the simulation effect of all schemes decreases, which means overly long L reduces the simulation accuracy. By evaluating the wind speed forecast capability of LSTM in the next 4 hours, it is found that the simulation accuracy decreases gradually while the prediction time increases. The forecast ability is ideal in the next 2 hours, and the RMSE is less than 2 m·s-1. LSTM proves economical and practical with low requirements for computing resources and has high application potential in operational wind speed forecast practice.

    參考文獻
    相似文獻
    引證文獻
引用本文

方楠,姜舒婕,閆曉敏,阮小建,馬辛宇.基于長短期記憶神經網絡的風速超短期快速滾動預報技術[J].氣象科技,2022,50(6):842~850

復制
分享
文章指標
  • 點擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2022-02-18
  • 定稿日期:2022-07-08
  • 錄用日期:
  • 在線發布日期: 2022-12-30
  • 出版日期:
您是第位訪問者
技術支持:北京勤云科技發展有限公司
午夜欧美大片免费观看,欧美激情综合五月色丁香,亚洲日本在线视频观看,午夜精品福利在线
>