基于雷達反射率因子和雷電定位數據的深度學習雷電預報模型
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家自然科學基金項目(52007037)資助


Research of Lightning Forecasting Based on Deep Learning Model with Radar Reflectivity Factors and Lightning Location Data
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    利用卷積神經網絡和門控循環單元(Gated recurrent units )神經網絡,基于雷達反射率因子和雷電定位數據開展了雷電預報研究。首先構建了引用注意力機制的基于卷積神經網絡和門控循環單元神經網絡的深度學習模型(Attention-ConvGRU);然后將雷達反射率因子數據和對應時間段(6 min)的雷電定位數據處理成圖像數據后輸入深度學習模型,訓練出可預報雷電的模型,包括3種模型:單雷電數據模型、單雷達數據模型和雷電-雷達雙數據模型;最后開展了預報試驗和定量評估。綜合評估表明,本文建立的雷電預報模型綜合預報準確率達到96.74%,虛警率35.83%,關鍵成功指數(Critical Success Index, CSI)為0.2072。個例分析表明,預報模型對于具有明顯移動趨勢的雷暴過程(A類雷暴)的預報效果優于不具有明顯移動趨勢的雷暴過程(B類雷暴),且隨著B類雷暴強度減弱模型預報能力逐漸減弱。

    Abstract:

    In this paper, the convolutional neural network and gated recurrent units neural network are used to conduct lightning forecasting research based on radar reflectivity factors and lightning location data. First, a deep learning model (Attention-ConvGRU) based on the convolutional neural network and gated recurrent unit neural network that introduces the attention mechanism is constructed. Then, the radar reflectivity factor data and the lightning location data of the corresponding period (6 minutes) are processed into image data, and input into the deep learning model to train the models that can predict lightning, including three models: single lightning data model, single radar data model and lightningradar dual data model. Finally, forecasting experiment and quantitative evaluation are carried out. The comprehensive evaluation shows that the forecasting model has a comprehensive forecasting accuracy of 96.74%, a false alarm rate of 35.83%, and a Critical Success Index (CSI) of 0.2072. The case study shows that the forecasting model has better lightning forecasting skills for thunderstorms with obvious moving trends (type A thunderstorms) than those without obvious moving trends (type B thunderstorms), and the forecasting skill of the model gradually weakens as the intensity of type B thunderstorms weakens.

    參考文獻
    相似文獻
    引證文獻
引用本文

李健,王宇,劉澤,李哲,吳大偉,陶漢濤,張磊.基于雷達反射率因子和雷電定位數據的深度學習雷電預報模型[J].氣象科技,2022,50(5):724~733

復制
分享
文章指標
  • 點擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2021-10-18
  • 定稿日期:2022-07-15
  • 錄用日期:
  • 在線發布日期: 2022-10-28
  • 出版日期:
您是第位訪問者
技術支持:北京勤云科技發展有限公司
午夜欧美大片免费观看,欧美激情综合五月色丁香,亚洲日本在线视频观看,午夜精品福利在线
>