重慶能見度特征分析及其與顆粒物濃度和氣象影響因子的關系
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

重慶市氣象局業務技術攻關團隊項目(ZHCXTD-201905)、業務技術攻關項目(YWJSGG-202122)資助


Analysis of Visibility Characteristics in Chongqing and Its Relationship with Particulate Concentration and Meteorological Factors
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    利用重慶地區能見度及溫、壓、濕、風等氣象資料和大氣顆粒物濃度數據,對重慶能見度特征及其影響因子進行分析,采用神經網絡方法建立能見度預報模型,分析比較了引入PM2.5濃度因子對預報模型的影響效果。發現:重慶地區能見度分布呈現西低東高以及長江沿線較低的分布特征;霧發生時的平均能見度低于降水時能見度也遠低于剔除雨、霧后的能見度,表明低能見度受大氣中水汽影響更大;霧在冬季比例明顯增加,使得平均能見度在冬季明顯降低,而6月和10月降水增多是導致這兩個月平均能見度出現明顯降低的重要原因;能見度日變化呈現單峰型,霧和降水高發時段與平均能見度低值區重疊,是造成夜間能見度低的一個重要原因;大氣濕度、溫度及顆粒物濃度都是影響能見度的重要因子,當相對濕度小于70%時能見度隨PM2.5增加明顯降低,當相對濕度大于70%時PM2.5對能見度的影響降低;在能見度的客觀預報模型中引入PM2.5濃度因子的預報效果好于不引入該因子的效果,特別是秋冬季的預報效果改善明顯。

    Abstract:

    Based on the visibility, temperature, pressure, humidity, wind and atmospheric particulate concentration data in Chongqing, the characteristics and influencing factors of visibility in Chongqing are analyzed. The visibility forecast model is established using the neural network method, and the effects of introducing the PM2.5 concentration factor on the forecast model are analyzed and compared. The results show that the visibility distribution in Chongqing is low in the west, high in the east, and low along the Yangtze River. The average visibility during fog is lower than that during precipitation and much lower after removing the data of rain and fog days, indicating that low visibility is more affected by water vapour in the atmosphere. The proportion of fog increases significantly in winter, leading to a significant decrease in average visibility in winter. The precipitation increase in June and October is an important reason for the significant decrease in average visibility in these two months. The diurnal variation of visibility shows a single-peak pattern, and the periods of high fog and precipitation overlap with the areas of low average visibility, which is an important reason for the low visibility at night. Atmospheric humidity, temperature and particle concentration are all critical factors affecting visibility. When relative humidity is less than 70%, visibility decreases significantly with the increase of PM2.5, and when relative humidity is more than 70%, the influence of PM2.5 on visibility decreases. The prediction effect of introducing the PM2.5 concentration factor into the visibility objective forecast model is better than that of not introducing the PM2.5 concentration factor, especially the prediction effect in autumn and winter is significantly improved.

    參考文獻
    相似文獻
    引證文獻
引用本文

韓余,劉寧微,周國兵,陳道勁,李晶,江文華.重慶能見度特征分析及其與顆粒物濃度和氣象影響因子的關系[J].氣象科技,2022,50(4):563~573

復制
分享
文章指標
  • 點擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2021-07-03
  • 定稿日期:2022-03-30
  • 錄用日期:
  • 在線發布日期: 2022-08-26
  • 出版日期:
您是第位訪問者
技術支持:北京勤云科技發展有限公司
午夜欧美大片免费观看,欧美激情综合五月色丁香,亚洲日本在线视频观看,午夜精品福利在线
>