基于LSTM的地基微波輻射計濕度廓線反演
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

中國氣象局云霧物理環境重點開放實驗室開放課題(2019Z01610)、四川省科技計劃項目(2019YFG0496, 2020YFG0143)資助


Humidity Profile Inversion of Ground Based Microwave Radiometer Based on LSTM
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    大氣濕度廓線對于研究大氣系統的復雜性具有十分重要的作用。地基微波輻射計有著連續觀測的特性,能夠以高時間分辨率反演出高度至10 km的大氣濕度廓線,廓線數據對于氣象預報和研究氣候系統的變化至關重要。為了提高反演大氣濕度廓線的精準度,本文使用時間循環神經網絡模型,利用微波輻射計連續探測的信號并使用Ka波段毫米波云雷達數據提高有云時的反演精度,采用LSTM(Long Short-Term Memory)神經網絡反演計算大氣濕度廓線,用探空儀實測相對濕度驗證并分析反演效果。該模型反演的濕度廓線與探空廓線的平均絕對誤差為9.80%,均方根誤差為13.85%,優于經典的BP(Back Propagation)神經網絡模型平均絕對誤差11.52%,均方根誤差15.66%。通過比較,證明了本文的反演模型利用連續觀測的亮溫數據能夠有效地提高反演精度,特別是對于3~7 km范圍內大氣濕度廓線分布較為復雜的相對濕度的反演。并驗證了該模型加入云觀測數據提高了有云時的反演精度。

    Abstract:

    The atmospheric humidity profile is a vital factor in studying the complexity of the atmospheric system. The groundbased microwave radiometer (MWR) can continuously observe and retrieve atmospheric humidity profiles up to 10 km with high temporal resolution. These profiles are essential for understanding the changes in the climate system. In order to improve the accuracy of retrieving the atmospheric humidity profile by MWR, this paper uses a time loop neural network model that uses the continuous detected signals of microwave radiometers. Moreover, Ka-band millimetre-wave cloud radar data is employed to improve the inversion accuracy for cloudy data. LSTM neural network is applied as the inversion method to retrieve atmospheric humidity profile, while radiosonde measures relative humidity as truth-value to verify and analyze the inversion effect. This research has also conducted a detailed comparison with classical inversion methods (BP and support vector machine). The average absolute error of the humidity profile and the sounding profile is 9.80%, the root mean square error is 13.85%, and the BP neural network model’s average absolute error is 11.52%. The root mean square error is 15.66%. The comparison proves that the method using temporal information could effectively improve the inversion accuracy, especially for the inversion of relative humidity in the range of 3 to 7 km, where the atmospheric humidity profile distribution is more complicated.

    參考文獻
    相似文獻
    引證文獻
引用本文

周高進,楊智鵬,彭靜,楊玲,陶法,茆佳佳.基于LSTM的地基微波輻射計濕度廓線反演[J].氣象科技,2022,50(1):21~29

復制
分享
文章指標
  • 點擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2021-05-11
  • 定稿日期:2021-10-14
  • 錄用日期:
  • 在線發布日期: 2022-02-28
  • 出版日期: 2022-02-28
您是第位訪問者
技術支持:北京勤云科技發展有限公司
午夜欧美大片免费观看,欧美激情综合五月色丁香,亚洲日本在线视频观看,午夜精品福利在线
>