北京地區溫度要素模式預報和客觀方法檢驗評估
DOI:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

冬奧賽場定點氣象要素客觀預報及風險預警技術研究及應用(2018YFF0300104)、國家重點研發計劃(2018YFF0300104)、氣象預報業務關鍵技術發展專項(YBGJXM(2018)03)、基于機器學習的冬奧精細天氣預報技術研發及示范應用(Z201100005820002)、北京市氣象局科技項目(BMBKJ201703001)資助


Evaluation of Models and Objective Methods for Temperature in Beijing Area
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    利用2018年10月1日至2019年9月30日北京地區55個地面氣象站的實況觀測數據對歐洲中期天氣預報中心的全球預報(ECMWFthin)、國家氣象中心區域預報(Grapes)、北京睿圖(RMAPS)、國家級指導預報(SCMOC)、北京智能網格溫度客觀預報(BJTM)和集合相似預報(AnEn)的逐日最高、最低氣溫預報結果進行檢驗評估。結果表明:①ECMWFthin模式預報效果優于Grapes和RMAPS,客觀方法BJTM和AnEn對ECMWFthin的改進效果明顯。②AnEn在10月至次年4月預報效果好,BJTM在5—9月預報效果好;不同預報時效中,AnEn在短期、中期前段預報效果較好,BJTM在中期5~9 d預報效果相對較好。③以南郊觀象臺為代表站進行檢驗,結果顯示模式預報均存在明顯的系統偏差,客觀方法對系統偏差有很好的訂正效果。④在降水、大風或無天氣系統時,BJTM、AnEn的日最高溫度預報準確率較高;霧霾天氣背景下,ECMWFthin的最高溫度預報準確率較高。霧霾、大風和無天氣系統時,ECMWFthin最低溫度預報偏差最小,客觀方法對模式預報無改進;降水天氣背景下,RMAPS和BJTM對最低溫度的預報偏差最小。

    Abstract:

    Compared with the observations from 55 Beijing auto weather stations from 1 October 2018 to 30 September 2019, the European Center MediumRange Weather Forecasts Fine Grid Model (ECMWFthin), Regional Assimilation and Prediction System (Grapes), Rapidrefresh Multiscale Analysis and Prediction System - Short Term (RMAPSST), Central Station Guided Forecast (SCMOC), Beijing Intelligent Grid Temperature Objective Prediction Method (BJTM) and Analog Ensemble method (AnEn) which mainly focus on the daily maximum and minimum temperature in the Beijing area are evaluated. (1) In total, the results show that ECMWFthin model performance was better than Grapes and RMAPS; Two objective methods, BJTM and AnEn, had apparent improvement effects on ECMWFthin. (2) AnEn performed well from October 2018 to April 2019, and BJTM performed well from May to September 2019. Regarding different forecast timeliness, AnEn performed well in the shortterm and the first part of mediumterm, BJTM performed well in 5 to 9 days in mediumterm. (3) Focusing on the Guanxiangtai station, the systematic deviation was evident in all three models. Objective methods reduced the systematic deviation of models. (4) Under the background of precipitation, wind and no obvious weather, the two objective methods BJTM and AnEn had significantly improved the forecast quality of the ECMWFthin model for daily maximum temperature. However, when haze weather happened, the forecast accuracy of ECMWFthin was significantly higher than other models and methods. For the minimum daily temperature, except for precipitation weather background, the ECMWFthin model had the smallest deviation, and objective methods slightly improved the model results. Moreover, the RMAPS results showed better performance when precipitation occurred, and objective methods reduced the systematic deviation of the largescale model.

    參考文獻
    相似文獻
    引證文獻
引用本文

趙桂潔,何娜,郝翠,李靖,李桑.北京地區溫度要素模式預報和客觀方法檢驗評估[J].氣象科技,2021,49(6):869~877

復制
分享
文章指標
  • 點擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2020-09-25
  • 定稿日期:2021-08-25
  • 錄用日期:
  • 在線發布日期: 2021-12-29
  • 出版日期: 2021-12-31
您是第位訪問者
技術支持:北京勤云科技發展有限公司
午夜欧美大片免费观看,欧美激情综合五月色丁香,亚洲日本在线视频观看,午夜精品福利在线
>