基于深度學習的衛星多通道圖像融合的海霧監測處理方法
DOI:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:


Sea Fog Monitoring Method Based on Deep Learning Satellite Multi-channel Image Fusion
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    海霧無論在海上還是在沿岸地帶,都因其惡劣的能見度對交通運輸、海洋捕撈和海洋開發工程以及軍事活動等造成不良影響,因此對于海霧的實時監測和預報就顯得尤為重要。本文提出了基于深度學習的靜止氣象衛星多通道圖像融合分割算法,使用DLinkNet深度卷積神經網絡語義分割算法模型對黃渤海海域范圍的16通道、空間分辨率為0.5 km的Himawari8衛星數據進行研究。分別采用均交并比(mIOU)以及觀測值檢驗作為評價指標,在測試集上的mIOU為0.9436,并且用衛星測試數據結果與海上觀測數據結果進行對比,得出霧區準確率(檢測有霧且真實有霧/檢測有霧)為66.5%,霧區識別率(檢測有霧且真實有霧/(真實有霧-云覆蓋))為51.9%,檢測正確率(檢測正確/總樣本)93.2%。本文提出的方法能為海霧監測提供一個可靠的參考。

    Abstract:

    Sea fog, whether on the sea or the coast, has adverse effects on transportation, marine fishing, marine development projects, and military activities due to its poor visibility. Therefore, realtime monitoring and forecasting of sea fog are essential. This paper proposes a multichannel image fusion segmentation algorithm for stationary meteorological satellites based on deep learning. The DLinkNet deep neural network semantic segmentation algorithm model is used to study the 16channel Himawari8 satellite data with a spatial resolution of 0.5 km in the Yellow Sea and the Bohai Sea. Using mIOU (mean Intersection Over Union) and observation value test as evaluation indicators, the mIOU on the test set is 0.9436, and comparing the results of satellite test data with the results of marine observation data. It was concluded that the accuracy rate of fog area (detect fog and real fog / detect fog) is 66.5%, the recognition rate of fog area (detect fog and real fog / (real fog-cloud coverage)) is 51.9%, and the detection accuracy rate (detection correct samples / total samples) is 93.2%. In conclusion, the method proposed in this paper can provide a reliable reference for sea fog monitoring.

    參考文獻
    相似文獻
    引證文獻
引用本文

黃彬,吳銘,孫舒悅,趙偉,崔戰北,呂成.基于深度學習的衛星多通道圖像融合的海霧監測處理方法[J].氣象科技,2021,49(6):823~829

復制
分享
文章指標
  • 點擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2020-11-12
  • 定稿日期:2021-09-06
  • 錄用日期:
  • 在線發布日期: 2021-12-29
  • 出版日期: 2021-12-31
您是第位訪問者
技術支持:北京勤云科技發展有限公司
午夜欧美大片免费观看,欧美激情综合五月色丁香,亚洲日本在线视频观看,午夜精品福利在线
>