GRAPES-GFS模式2 m溫度預報的最優時窗滑動訂正方法
DOI:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

廣西壯族自治區氣象局氣象科研計劃項目(桂氣科2019M06和桂氣科2021Z03)資助


Moving Average of Optimal Time-Window Method For 2 m Temperature Forecast Correction of GRAPES-GFS
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    利用2017—2018年GRAPESGFS模式預報資料和廣西區域自動站逐時氣溫觀測資料,分析模式預報偏差特征,發現GRAPESGFS模式對廣西區域2 m溫度的預報系統性偏低,隨著預報時效增加,預報偏差增大,系統性偏差主要出現在桂北山區、左右江河谷及沿海;春夏秋三季的午后氣溫預報偏差有明顯的系統性,冬季午后氣溫和四季凌晨氣溫預報偏差的隨機性較大。為了確定滑動訂正的最優時窗,通過活動時窗長度的方法,設計不同的滑動訂正方案,制定最優時窗滑動訂正方案,并進一步利用2020年最優時窗滑動訂正業務試驗產品,對比驗證了該方案的訂正效果。結果表明:分別采用固定時窗、季節最優時窗、月份最優時窗等滑動平均訂正方案進行訂正,春夏秋3季的訂正效果明顯好于冬季、午后訂正技巧高于夜間,其中固定時窗滑動平均方案中的長時窗(15~60 d)訂正、季節最優時窗滑動訂正以及月份最優時窗滑動訂正這幾種方式訂正效果最優;所制定的最優時窗滑動平均訂正方案,可以在不同滑動方案的基礎上穩定地提高預報準確率,達到最優時窗滑動的目的。

    Abstract:

    Using GRAPESGFS forecast data and temperature observation data of Guangxi regional automatic weather stations during 2017-2018, errors of the 2 m temperature forecast of the GRAPESGFS model over Guangxi are analyzed. It is found that the 2 m temperature forecast of the GRAPESGFS model is lower than the observation in Guangxi. Forecast errors increase with the forecast time and regularly appear in the mountain areas in the northern Guangxi, Zuojiang, Youjiang river valley, and coastal areas. The temperature forecast error at noon is systematic in spring, summer and autumn but the errors at noon in winter and that at night in all seasons are random. To develop the optimal timewindow of the moving average method, we compare different moving average solutions with the unfixed timewindows and verify its improvement with the trial correction products of the optimal timewindow moving average method during 2020. Results show that the moving average solutions of fixed timewindow, optimal seasonal timewindow, and monthly optimal time window are all effective in spring, summer, and autumn. The correction skill is higher at noon than that at night. Among all the solutions, fixed long timewindow (15 to 60 d) solution, seasonal optimal timewindow solution and monthly optimal timewindow solution are more effective. Running optimal timewindow method based on different moving average solutions can steadily improve the 2 m temperature forecast.

    參考文獻
    相似文獻
    引證文獻
引用本文

何珊珊,藍盈,戚云楓. GRAPES-GFS模式2 m溫度預報的最優時窗滑動訂正方法[J].氣象科技,2021,49(5):746~753

復制
分享
文章指標
  • 點擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2021-02-24
  • 定稿日期:2021-06-09
  • 錄用日期:
  • 在線發布日期: 2021-10-26
  • 出版日期: 2021-10-31
您是第位訪問者
技術支持:北京勤云科技發展有限公司
午夜欧美大片免费观看,欧美激情综合五月色丁香,亚洲日本在线视频观看,午夜精品福利在线
>