基于深度語義分割的FY-2E遙感影像云檢測方法
DOI:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家重點研發計劃重點專項(編號:2018YFC1506500)資助


A Cloud Detection Method for FY-2E Remote Sensing Imagery Based on Deep Semantic Segmentation
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    本文提出了一種基于深度語義分割技術的全自動云檢測算法,可提高FY2E遙感影像的云檢測精度。首先,將FY2E L1數據與精度較高的云檢測結果進行匹配,獲得用于訓練和評估樣本的數據集;其次,設計了深度語義分割網絡, 并針對訓練集中正負樣本嚴重失衡的問題,改進了損失函數,可以有效提取云的邊界;最后,分別以FY2E和MODIS數據作為訓練和標簽樣本訓練網絡,得到了可用于FY2E L1影像檢測的四分類模型。試驗結果表明,在四分類檢測中,所提方法的準確率達到了75%,Kappa系數為0.53左右。與現有多通道閾值法相比,采用所提方法進行二分類檢測可提高約90%樣本的準確率,部分樣本的準確率提升20%以上。此外,所提方法對云邊緣、破碎云等細節識別能力較強,且具有一定的魯棒性,受訓練樣本中的誤判類別影響較小。未來通過擴充數據集并優化網絡,可提高FY2全圓盤影像的數據質量。

    Abstract:

    A fullautomatic cloud detection algorithm based on deep semantic segmentation is proposed to improve the accuracy of cloud detection for the remote sensing imagery of FY2E satellites. Firstly, to train and evaluate, a sample data set is created by the data of FY2E L1 matched with the cloud detection results with high accuracy. Secondly, a deep semantic segmentation network is designed. A loss function is improved to extract the cloud’s boundary effectively for a severe imbalance between positive and negative samples in the train data set. Finally, FY2E and MODIS data, taken as train and label samples, respectively, are used for training networks, resulting in four classification models for detecting FY2E L1 imagery. The test results show that the proposed method’s accuracy and the Kappa coefficient are 75% and about 0.53 in four classification tests, respectively. Compared with the existing multichannel threshold method in two classification tests, the proposed method can improve the accuracy of about 90% of the samples and the accuracy of some samples by more than 20%. In addition, the proposed method has a strong recognition ability for cloud edges, broken clouds and other details. It has a certain degree of robustness, which is less affected by the misclassification categories in train samples. Furthermore, by expanding the data set and optimizing the network, the proposed method will improve the data quality of the entire disk imagery of FY2.

    參考文獻
    相似文獻
    引證文獻
引用本文

高昂,肖萌,唐世浩,姜靈峰,咸迪,鄭偉.基于深度語義分割的FY-2E遙感影像云檢測方法[J].氣象科技,2021,49(5):671~680

復制
分享
文章指標
  • 點擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2020-10-13
  • 定稿日期:2021-01-22
  • 錄用日期:
  • 在線發布日期: 2021-10-26
  • 出版日期: 2021-10-31
您是第位訪問者
技術支持:北京勤云科技發展有限公司
午夜欧美大片免费观看,欧美激情综合五月色丁香,亚洲日本在线视频观看,午夜精品福利在线
>