GRAPES-GEPS K-均值集合預報產品開發及應用
DOI:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

冬奧會氣象條件預測保障關鍵技術(2018YFF0300103)、中國氣象局數值預報中心青年基金(400441)、國家自然科學基金青年基金項目(41906022)資助


Development and Application of K-means Ensemble Prediction Product Based on GRAPES-Global Ensemble Prediction System
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    基于GRAPES全球集合預報系統(GRAPESGEPS)及2020年2月13—16日的全國寒潮天氣過程,開發出一類新的集合預報產品—K均值聚類產品。采用爬山法確定最佳聚類數量,并采用K均值聚類算法對集合樣本進行分類。結果表明,該方法的500 hPa位勢高度場所有類別的聚類產品均呈現出中高緯Ω形的環流形勢及低壓系統后部冷平流的走向,發生概率最高的聚類產品最能反映實況中環流形勢的分布。對于850 hPa溫度場,其聚類產品均呈現出全國溫度從北到南呈帶狀逐漸增加的空間分布特征,發生概率最高的第一類聚類產品與實況最為接近。對于10 m風速聚類產品,在較大風速處,集合樣本離散度較大,不同類別的風速大小差異顯著;發生概率較高的第一類聚類產品,其對天津及周邊地區10 m風速的分布及強度描述均較準確,并能提供有價值的預報信息。K均值聚類能有效地實現集合預報樣本信息的濃縮,該產品可為預報員判斷某一時次的天氣預報提供直觀指導。

    Abstract:

    Based on the GRAPESGlobal Ensemble Forecast System (GRAPESGEPS), and the nationwide coldwave process from 13 to 16 February 2020, the Kmeans cluster products are developed. In this paper, the Sum of the Squared Errors (SSE) criterion function is applied to determine the most appropriate clustering numbers and the Kmeans cluster algorithm is used to classify the ensemble samples. Results indicate that, all types of Kmeans cluster products related to the 500 hPa geopotential height present the Ωshaped circulation situation and the cold advection situation behind the lowpressure system. In addition, Type 1 clustering products with the highest probability reflect the observed circulation situation most efficiently. For 850 hPa temperature, all categories can present the spatial characteristics of 850 hPa temperature, which increase gradually from North China to South China. In addition, Type 1 clustering products with the highest probability can reflect the spatial distribution of 850 hPa temperature and possess the least errors related to the observation. For 10 m wind speed clustering products, at higher wind speeds, the dispersion of the aggregate samples is larger, and the wind speeds of different kinds have significant differences. The Type 1 clustering products with the highest probability can reflect the spatial distribution and intensity of 10 m wind speed in Tianjin and its surrounding areas exactly and provide valuable prediction information for forecasters. With Kmeans cluster results, we can realize the aggregation of forecast sample information and provide the intuitive guidance of weather prediction for the forecasters.

    參考文獻
    相似文獻
    引證文獻
引用本文

齊倩倩,佟華,陳靜. GRAPES-GEPS K-均值集合預報產品開發及應用[J].氣象科技,2021,49(4):542~551

復制
分享
文章指標
  • 點擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2020-06-27
  • 定稿日期:2021-01-04
  • 錄用日期:
  • 在線發布日期: 2021-08-23
  • 出版日期: 2021-08-31
您是第位訪問者
技術支持:北京勤云科技發展有限公司
午夜欧美大片免费观看,欧美激情综合五月色丁香,亚洲日本在线视频观看,午夜精品福利在线
>