基于CNN和RF算法的ECMWF降水分級訂正預報方法
DOI:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

廣西自然科學基金面上項目(2018GXNSFAA294128,2018GXNSFAA281229)、國家自然科學基金項目(41765002)、廣西重點基金項目(2017GXNSFDA198030)共同資助


ECMWF Precipitation Grading Correction Forecast Method Based on CNN and RF Algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    利用卷積神經網絡(CNN)和隨機森林回歸模型,提出了一種新的歐洲中期天氣預報中心(ECMWF)降水訂正預報方法。該方法首先根據ECMWF模式對站點雨量預報值所屬的等級進行劃分,再計算出不同等級相對應的高相關因子矩陣。進一步利用CNN模型對高相關矩陣進行綜合特征提取的學習和訓練。最后對CNN模型最終輸出的特征因子中,選取若干個與預報站點相關性高的特征,并與ECMWF降水量場插值到預報站點的因子一起,作為隨機森林回歸模型的輸入因子進行預報建模。通過對10個預報試驗站點未來24 h降水量的分級和不分級訂正預報試驗,結果表明:①ECMWF降水量分級訂正預報方法的平均絕對偏差和均方根誤差分別比利用ECMWF插值到站點的預報方法減小了20%和15%;②24 h暴雨及以上的降水分級訂正預報方法的平均TS評分為0.32,也顯著高于EC插值的0.19;③與利用同樣的預報模型對全樣本(不分級)的傳統數值預報模式產品訂正預報方法相比,本文提出的分級訂正預報方法在總體預報精度和暴雨及以上的強降水預報TS評分上均有更高的預報技巧。

    Abstract:

    A new precipitation correction forecast method for ECMWF is proposed by using Convolution Neural Network (CNN) and Random Forest Regression (RFR) models. In the new method, the grades of rainfall forecast values of stations are divided according to the ECMWF model, and then the high correlation factor matrix corresponding to different grades is calculated. The CNN model is used to train the comprehensive features of the high correlation matrix. Finally, the features highly correlated with the forecast stations and the factors by the ECMWF precipitation field interpolating to the forecast stations are served as the RFR forecast modeling inputs. The graded and nongraded 24 hour precipitation correction forecast experiments for 10 stations are conducted. The results show that the MAE and RMSE errors of the ECMWF model precipitation grading correction forecast method proposed in this paper are reduced by 20% and 15%, respectively, when compared with the forecast method of ECMWF rainfall forecast field interpolating to stations. Meanwhile, the TS (Threat Score) of 24 hour rainstorms at 10 stations is 0.32, which is significantly higher than that of the EC interpolation (0.19). In addition, compared with the traditional numerical prediction model product correction method using the same forecast model for the full sample (nongraded), the grading correction forecast method proposed in this paper shows a higher forecast sill in the overall forecast accuracy and the heavy rainfall forecast TS score.

    參考文獻
    相似文獻
    引證文獻
引用本文

趙華生,金龍,黃小燕,黃穎.基于CNN和RF算法的ECMWF降水分級訂正預報方法[J].氣象科技,2021,49(3):419~426

復制
分享
文章指標
  • 點擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2020-07-08
  • 定稿日期:2020-10-30
  • 錄用日期:
  • 在線發布日期: 2021-06-23
  • 出版日期: 2021-06-30
您是第位訪問者
技術支持:北京勤云科技發展有限公司
午夜欧美大片免费观看,欧美激情综合五月色丁香,亚洲日本在线视频观看,午夜精品福利在线
>