基于Xgboost算法的短時強降水預報方法
DOI:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

重慶市技術創新與應用發展專項重點項目(cstc2019jscxtjsbX0007)和重慶市技術創新與應用發展專項面上項目(cstc2019jscxmsxmX0297)資助


A Method of ShortDuration Heavy Rain Forecast Based on Xgboost Algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    基于EC細網格模式的再分析場計算診斷參量,并結合重慶地區2011—2014年5—9月間短時強降水個例建立訓練集,進而根據箱線圖差異指數提出的閾值法對樣本初步消空,然后通過K均值聚類和Relief算法分別重建了類別平衡的訓練集,并優選了平均權重較大的參量進入模型,建立了一個以Xgboost算法為核心的重慶地區短時強降水預報模型。結果表明:①模型可輸出概率預報或用戶自定義概率閾值生成確定性預報。②2015年獨立樣本測試表明,當概率閾值取0.1時,模型的AUC為0.92,總體分類效果較好,全體樣本的短時強降水TS評分可達0.3,高于EC再分析場;對其中兩次個例分析表明,Xgboost方法的短時強降水客觀概率預報能更好描述強降水發生的概率和落區,逐時次的預報效果仍優于EC,TS評分在0.2~0.4之間。③模型對近年來短時強降水過程的回報TS在0.1以上,仍然高于EC并與常規業務水平持平,具有一定參考意義。

    Abstract:

    A training set is obtained by combining diagnostic predictors calculated from the ECMWF finemesh reanalysis (ECthin) fields with the shortduration heavy rain cases from 2011 to 2014 between May and September. Based on the box difference indexes of all predictors, a thresholding method is proposed to rudimentarily decrease false alarms. A new classbalanced training set is reconstructed by using the Kmeans clustering, and meanwhile, predictors with greater average weights are selected by the Relief algorithm. A forecast model for shortduration heavy rainfall in the Chongqing region centered by the Xgboost algorithm is established. The results suggest three points: (1) this model provides probabilistic and deterministic binary forecasts generated by the customized threshold; (2) the verification of the independent validation set in 2015 shows that the model achieves better classification performance in general and outperforms the ECthin hourly total precipitation reanalysis when the probability threshold is set to be 0.1, with TS score reaching 0.3. Two case studies show that this Xgboostbased model can predict the probability and area of potential shortduration heavy rain events with higher precision than the hourly ECthin, scoring TS between 0.2 to 0.4. (3) The TS scores of the Xgboost model on cases from recent years are greater than 0.1, outperforming the ECthin and rivalling daily forecast operation, which means that its products are well worth referring to.

    參考文獻
    相似文獻
    引證文獻
引用本文

朱巖,翟丹華,吳志鵬,張焱.基于Xgboost算法的短時強降水預報方法[J].氣象科技,2021,49(3):406~418

復制
分享
文章指標
  • 點擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2020-06-03
  • 定稿日期:2020-11-10
  • 錄用日期:
  • 在線發布日期: 2021-06-23
  • 出版日期: 2021-06-30
您是第位訪問者
技術支持:北京勤云科技發展有限公司
午夜欧美大片免费观看,欧美激情综合五月色丁香,亚洲日本在线视频观看,午夜精品福利在线
>