基于二分K均值聚類算法的數字檔案優化
DOI:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

江蘇省氣象重點科研項目(基金編號:KZ201701)資助


Digital Archive Optimization Based on KMeans Algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    精細化預報服務和氣象能源開發等需要時間序列長、空間和時間分辨率更高的氣象資料,對逐小時資料的需求尤為突出?,F存歷史氣象資料進行數字化掃描之后存在污點、褪色、模糊、字跡洇透等問題,不符合檔案歸檔和服務的要求、同時也造成對圖像進行數值提取的難度大大增加,提取結果的準確性也難以保證。本文提出一種基于K均值的圖像優化算法,能夠快速識別和區分圖像背景和數據記錄曲線,過濾圖像中的噪點,統一數據記錄曲線的顏色和粗細。經過優化之后的圖像對比度和清晰度明顯增加,體積明顯縮小,實際應用中發現,經過優化之后的圖像節約了存儲資源和成本,同時清晰度有明顯地提高,結果表明基于K均值的優化方法明顯提高了氣象數字化檔案的質量和應用效果。

    Abstract:

    Meteorological forecasting services and meteorological energy development require data with longer time series, higher spatial and temporal resolution, especially for hourly data. Meteorological data scanned from recording papers have problems such as stains, fading, blurring, and smearing, which cannot meet the requirements of archiving and servicing, and also makes the numerical extraction of images greatly difficult, and the accuracy of extraction results is not guaranteed. This paper proposes an image optimization algorithm based on K means, which can quickly identify and distinguish the image background and data recording curves, filter noise in images, and unify the color and thickness of data recording curves. After optimization, the contrast and sharpness of the images are obviously increased, and the volume is obviously reduced. In practice, it is found that the optimized images save storage resources and cost, and the recognition rate is obviously improved. The result shows that the optimization method based on K means improves the quality and application effect of meteorological digital files.

    參考文獻
    相似文獻
    引證文獻
引用本文

陳鵬,程思,鮑婷婷,翟伶俐,王宏斌.基于二分K均值聚類算法的數字檔案優化[J].氣象科技,2019,47(6):1032~1036

復制
分享
文章指標
  • 點擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2018-08-24
  • 定稿日期:2019-07-09
  • 錄用日期:
  • 在線發布日期: 2019-12-16
  • 出版日期:
您是第位訪問者
技術支持:北京勤云科技發展有限公司
午夜欧美大片免费观看,欧美激情综合五月色丁香,亚洲日本在线视频观看,午夜精品福利在线
>