基于“深度學習”識別模型的玉米農田監測應用系統設計與實現
DOI:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家自然科學基金(61671248, 41605121)、江蘇省重點研發計劃(BE2018719)和江蘇省“信息與通信工程”優勢學科計劃資助、江蘇省研究生科研創新計劃(KYCX18_1038)資助


Study of Corn Field Monitoring and Application System Based on DeepLearning Recognition Mode
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    為了精準判斷玉米所處生長階段,遠程實時監測玉米長勢,分析生長階段與田間環境要素間的關系,本文提出深度局部關聯神經網絡,克服了玉米生長階段識別中存在的多模態和模糊性問題,在Oxford VGGNet(Visual Geometry Group Net)模型中添加一個新的監督層,即局部關聯損失層,提高深層特征的判別能力?;谒岬挠衩咨L階段圖片識別新算法,拓展環境要素監測功能,設計一套基于深度學習的玉米農田監測系統。系統由玉米農田監測裝置和云端服務器組成,監測裝置采集玉米圖像、氣象要素和田間位置數據,通過4G無線發送給云端服務器,云端服務器利用深度局部關聯神經網絡識別生長階段,顯示結果并存入數據庫中。仿真試驗表明,深度局部關聯神經網絡平均識別準確率達到92.53%,較VGGNet的87.21%和LSTM的88.50%,準確率分別提高了532%和4.03%。實地測試結果表明,野外環境下系統準確率可達到91.43%,能夠穩定地對農田玉米生長情況進行監測,具有重要的應用價值。

    Abstract:

    In order to accurately determine the growth stage of corn, remotely monitor the growth of corn and analyze the relationship between growth stage and field environment elements, this paper proposes a deep local correlation neural network to overcome the multimodal and fuzzy problems in the identification of corn growth stages. In the Oxford VGGNet (Visual Geometry Group Net) model, a new supervised layer, namely the local correlation loss layer, is added to improve the discriminating capability of deep features. Based on the proposed new image recognition algorithm for corn growth stages, the environmental element monitoring function is expanded, and a corn farmland monitoring system based on deep learning is designed. The system consists of a corn farmland monitoring device and a cloud server. The monitoring device collects corn images, meteorological elements and field location data, and sends them to the cloud server through a 4G wireless internet. The cloud server uses the deep local correlation neural network to identify the growth stages, and displays the results and stores them in the database. The simulation experiments show that the average recognition accuracy of the deep local correlation neural network reaches 92.53%, compared with 87.21% of VGGNet and 88.50% of LSTM, and the accuracy rate is increased by 5.32% and 4.03%, respectively. The field test results show that the accuracy rate of the system can reach 91.43% in the field environment, and it can stably monitor the growth of farmland corn, which has important application value.

    參考文獻
    相似文獻
    引證文獻
引用本文

閻妍,行鴻彥,劉剛,吳紅軍,吳慧,戴學飛,余培.基于“深度學習”識別模型的玉米農田監測應用系統設計與實現[J].氣象科技,2019,47(4):571~580

復制
分享
文章指標
  • 點擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2018-09-03
  • 定稿日期:2018-12-04
  • 錄用日期:
  • 在線發布日期: 2019-08-27
  • 出版日期:
您是第位訪問者
技術支持:北京勤云科技發展有限公司
午夜欧美大片免费观看,欧美激情综合五月色丁香,亚洲日本在线视频观看,午夜精品福利在线
>