基于矩陣補全的氣象數據推測
DOI:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

“十三五”國家重點研發計劃專項(2018YFC0704500)、中國博士后科學基金(批準號:2017M613087)、國家自然科學基金青年科學基金(批準號:61403298)資助


Meteorological Data Estimation Based on Matrix Completion
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    傳統的氣象數據推測大多基于插值方法,而此方法需要近鄰臺站的完整觀測數據,這在很大程度上限制了插值方法的應用。為此,本文提出了一種基于矩陣補全的氣象數據推測方法,該方法根據氣象數據的近似低秩性來推測缺失數據。首先,選取我國662個氣象臺站2004—2013年的逐日平均溫度和日照時數兩種氣象要素作為研究對象,通過矩陣奇異值的累積貢獻率來檢驗數據集的近似低秩性。然后設計了兩組試驗,第1組試驗考慮了不同采樣概率下各年份的數據推測,第2組試驗隨機選取某些臺站,考慮所選臺站數據連續缺測時的推測。最后,使用矩陣補全方法推測缺失數據,采用10 a的平均誤差作為評價指標。試驗結果表明:矩陣補全方法能很好地推測缺失數據,且具有一定的魯棒性。

    Abstract:

    The traditional meteorological data estimation is mostly based on the interpolation methods, which require the complete observation data of the nearest neighbor stations and largely limit the application of the interpolation methods. This paper proposes a method for estimating meteorological data based on matrix completion. The proposed method estimates missing data based on the approximate lowrankness of meteorological data. The daily average temperature and sunshine hours of 662 meteorological stations in China from 2004 to 2013 are selected as the research objects. The approximate lowrankness of the data set is validated by the cumulative contribution rate of matrix singular values. Then two groups of experiments are designed. The first group of experiments considers the data estimation for different years with different sampling probabilities. The second group randomly chooses some stations and considers the data estimation when the data of the selected stations are continuously missing. Finally, the matrix completion method is employed to estimate the missing data, and the 10year average error is used as the evaluation index. Experimental results show that the matrix completion method has good estimation performance and certain robustness.

    參考文獻
    相似文獻
    引證文獻
引用本文

史加榮,李雪霞.基于矩陣補全的氣象數據推測[J].氣象科技,2019,47(3):420~425

復制
分享
文章指標
  • 點擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2018-06-26
  • 定稿日期:2018-10-16
  • 錄用日期:
  • 在線發布日期: 2019-06-25
  • 出版日期:
您是第位訪問者
技術支持:北京勤云科技發展有限公司
午夜欧美大片免费观看,欧美激情综合五月色丁香,亚洲日本在线视频观看,午夜精品福利在线
>