基于雨聲識別的雨量測量方法
DOI:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家自然科學基金(61671248, 41605121)、江蘇省重點研發計劃項目(BE2018719)和江蘇省“信息與通信工程”優勢學科計劃資助


Rainfall Measurement Based on Rain Sound Recognition
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    針對傳統雨量測量耗時長,維護不方便的問題,本文在分析聲信號識別技術的基礎上,提出了基于雨聲識別的雨量測量方法,模擬人耳聽覺中對頻域劃定的非線性性和對同一頻率群聲信號作疊加評價的機理,將傅里葉變換后的能量譜通過梅爾(Mel)濾波器,提取雨聲的梅爾頻率倒譜系數(MFCC)作為雨聲信號的特征向量。在此基礎上,構建一個三層BP神經網絡,將歸一化后的樣本數據用于神經網絡訓練,最后將測試樣本用于對雨量的識別。試驗結果表明,在少量樣本訓練的基礎上神經網絡即能有效識別雨量大小,為聲信號識別技術應用于更為精準的雨量測量提供了理論依據。

    Abstract:

    Aiming at the problem of longtime consuming and inconvenient maintenance of traditional rainfall measurement, based on the analysis of acoustic signal recognition technology, this paper proposes a rainfall measurement method based on sound recognition to simulate the nonlinearity of frequency domain demarcation and the mechanism of superimposing acoustic signals in the same frequency group in human ears. The Fourier transformed energy spectrum is passed through a Mel filter, and then the MelFrequency Cepstral Coefficients of the rain sounds are extracted as the eigenvector of rain sound signals. On this basis, a threelayer BP neural network is constructed, and the normalized sample data are used for neural network training. Finally, the test samples are used to identify the rainfall. Experimental results show that neural network can effectively identify the amount of rainfall on the basis of a small amount of sample training, which provides a theoretical basis for the application of acoustic signal recognition technology for more accurate rainfall measurement.

    參考文獻
    相似文獻
    引證文獻
引用本文

丁苑,行鴻彥.基于雨聲識別的雨量測量方法[J].氣象科技,2019,47(1):35~40

復制
分享
文章指標
  • 點擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2018-02-09
  • 定稿日期:2018-10-23
  • 錄用日期:
  • 在線發布日期: 2019-02-27
  • 出版日期:
您是第位訪問者
技術支持:北京勤云科技發展有限公司
午夜欧美大片免费观看,欧美激情综合五月色丁香,亚洲日本在线视频观看,午夜精品福利在线
>