一種基于MEABP的太陽輻射反演算法
DOI:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

四川省科技廳科技支撐項目“ 2015GZ0278”資助


Solar Radiation Inversion Algorithm Based on MEABP
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    基于光電原理的日照計即將在全國推廣應用,以光照度觀測數據為主反演太陽輻射數據可以有效彌補太陽輻射觀測站數量不足的現狀。針對現有的太陽輻射反演方法的不足,提出一種融合主成分分析(PCA)、思維進化算法(MEA)和BP神經網絡的復合模型,利用太陽光照度、太陽高度角、溫度和濕度觀測分鐘數據反演太陽輻照度。首先,以晴空指數為依據,基于概率神經網絡(PNN)分類法,將天氣類型分為晴、云、陰3類,分類準確率達到966948%。再利用PCA降維后的4個影響因子,對3類天氣分別采用BP、GABP和MEABP法反演太陽輻照度,與標準輻射表的實測數據對比。結果表明:晴、云、陰的MEABP模型的決定系數最高達到09958,與單一BP模型相比,RMSE分別降低了49%、3245%和1064%;相比于GABP模型誤差,MAPE最高減少了4254%。本文所提出的MEABP復合模型的泛化能力得到了有效提高。

    Abstract:

    The sunlight meter based on the photoelectric principle will be soon popularized and applied in the whole country. The inversion of solar radiation data based on the observation data of light intensity can effectively make up for the insufficient number of solar radiation observation stations. Aiming at the shortcomings of the existing solar radiation estimation methods, a composite model combining with the Principal Component Analysis (PCA), the Mind Evolutionary Algorithm (MEA) and the BP neural network is proposed, using the observation minutes data of solar intensity, solar altitude angle, temperature, and humidity to invert the solar irradiance. Based on the clearness index and the probabilistic neural network (PNN) classification method, the weather types are divided into three categories: sunny, cloudy, and overcast. The classification accuracy is 966948%. Then using the four influencing factors after PCA dimensionality reduction, the solar irradiance is obtained by the BP, GABP and MEABP methods for the three types of weather, and compared with the measured data of the standard radiation meters. The results show that the determination coefficient of the MEABP model is up to 09958 in sunny, cloudy and overcast weather. Compared with the single BP model, RMSE decreases by 49%, 3245% and 1064%, respectively. Compared with the GABP Model error, MAPE decreases by 4254%. The generalization capability of the MEABP composite model proposed in this paper has been effectively improved.

    參考文獻
    相似文獻
    引證文獻
引用本文

鄭丹,馬尚昌,張素娟.一種基于MEABP的太陽輻射反演算法[J].氣象科技,2018,46(5):860~867

復制
分享
文章指標
  • 點擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2017-10-28
  • 定稿日期:2018-05-18
  • 錄用日期:
  • 在線發布日期: 2018-10-31
  • 出版日期:
您是第位訪問者
技術支持:北京勤云科技發展有限公司
午夜欧美大片免费观看,欧美激情综合五月色丁香,亚洲日本在线视频观看,午夜精品福利在线
>