三種統計預報模型在江蘇省道路低溫預警中的應用
DOI:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

江蘇省科技支撐計劃(BE2015732),國家公益性行業(氣象)科研專項(GYHY201406029,GYHY201306043),江蘇省氣象局北極閣基金(BJG201404)資助


Application of Three Statistical Forecast Models in Early Warning of LowTemperature on Road Surface in Jiangsu and Their Comparison
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    為了更好地開展道路交通低溫災害的預警,減輕道路結冰給車輛行駛造成的危害,本文利用2012—2016年江蘇省高速公路網AWMS系統交通氣象觀測數據,在對路面低溫發生規律進行分析的基礎上,結合多元線性回歸、樸素貝葉斯以及支持向量機3種統計預報方法,開展了路面低溫預警的統計建模與預報試驗。結果表明:①江蘇全省高速公路網路面溫度出現0 ℃以下、-2 ℃以下、-5 ℃以下的低溫頻率均呈“北高南低”分布。②全省高速公路網路面溫度出現0 ℃以下的低溫時次大多在15:00到次日06:00之間。③在對京滬高速M9308站的單站建模與預報試驗中發現,路面低溫預報因子組合中以13:00氣溫、13:00—18:00氣溫變溫、13:00路面溫度、13:00—18:00路面變溫、13:00路基溫度、13:00—18:00路基變溫、18:00相對濕度和18:00風速〖WTBX〗U〖WTBZ〗分量為自變量組合的預報方程效果最好,3種方法中以樸素貝葉斯模型的預報準確率最高;④就全省高速公路網而言,3種統計預報模型的路面低溫預報準確率均超過75%,通過對全路網路面低溫預報的試驗結果對比發現,多元線性回歸方法對江蘇省北部路網的預報效果最好,預報準確率大多在85%以上;而支持向量機模型對江蘇省南部路網的預報效果最好,大部分站點的低溫預報準確率達95%以上。

    Abstract:

    In order to provide a better service for the warning of low temperature disasters on road surface and mitigate the damage caused by the frozen road against cars, in this paper, the observed data of traffic meteorological factors in the Automatic Weather Monitoring System (AWMS) on the Jiangsu expressway network from 2012 to 2016 are collected to analyze the temporal and spatial pattern of low temperature occurrence on the road surface and the statistic model establishment and the forecast experiments of the low temperature warning on road surface are carried out through three statistical forecast methods: the Multiple Linear Regression, the Naive Bayes Method, and the Support Vector Machine Model. The results are showed as follows: (1) 〖JP2〗The occurrence frequency of low temperatures below 0 ℃, below -2 ℃〖JP〗 and below -5 ℃ on the road surface of the expressway network in Jiangsu Province displayed the distributions of “higher in the north part and lower in the south part.” (2) The road surface temperature below 0 ℃ on the expressway network occurs between 15:00 and 06:00 of the next day in general. (3) In the model establishment and forecast experiments of a single station for M9308 Station on the Jiangsu section of the BeijingShanghai Expressway, it is found that the forecast models taking the air temperature at 13:00, the variation of air temperature from 13:00 to 18:00, the road temperature at 13:00, the variation of road temperature from 13:00 to 18:00, the roadbed temperature at 13:00, the variation of roadbed temperature from 13:00 to 18:00, the relative humidity at 18:00, and the 〖WTBX〗U〖WTBZ〗 component of wind speed at 18:00 as the forecast factors have the best efficiency in the warning of road low temperature. The naive Bayes method has the highest forecasting accuracy rate in the three methods. (4) For the whole expressway network in Jiangsu, the accuracy rates of three statistical forecast models in the warning of low temperature on road surface are higher than 75%. The comparison of the low temperature forecast experiment results of road surface on the Jiangsu expressway network indicates that the Multiple Linear Regression shows the best warning efficiency in the northern Jiangsu with an accuracy rate larger than 85% and the Support Vector Machine Model displays the best warning efficiency in the southern Jiangsu with an accuracy rate higher than 95%.

    參考文獻
    相似文獻
    引證文獻
引用本文

董天翔,包云軒,袁成松,周林義,焦圣明.三種統計預報模型在江蘇省道路低溫預警中的應用[J].氣象科技,2018,46(4):773~784

復制
分享
文章指標
  • 點擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2017-07-14
  • 定稿日期:2017-10-23
  • 錄用日期:
  • 在線發布日期: 2018-08-30
  • 出版日期:
您是第位訪問者
技術支持:北京勤云科技發展有限公司
午夜欧美大片免费观看,欧美激情综合五月色丁香,亚洲日本在线视频观看,午夜精品福利在线
>