基于百度地圖的精細化格點預報顯示
DOI:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

陜西省自然科學基礎研究計劃(2016JM4020)、陜西省氣象局重點科研項目(2016Z1)、中國氣象局預報員專項(CMAYBY2014070)共同資助


FineMesh Grid Point Forecast System Based on BaiduMap
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    精細化格點要素預報是目前中國氣象局的主推業務和未來天氣預報的發展方向,如何有效地將預報產品提供給用戶使用,是精細化格點預報的最終環節。本文介紹了基于百度地圖API的陜西精細化格點預報顯示系統,系統主要實現了:①降水預報,以CMORPH(NOAA Climate Prediction Center Morphing Method)衛星與全國3萬個自動觀測站的逐時降水量融合資料為基礎,通過動態偏差訂正的方法來提高格點降水的預報能力;溫度預報,采用滑動線性回歸的方法來改善溫度預報效果。②任意位置的地理信息獲取及對應格點240 h預報時效的氣象要素實時展示。③格點氣象要素向站點轉換,通過格點值提取全省98個觀測站逐3 h站點預報值,實時分析過去24 h降水、溫度預報與觀測值的誤差,供用戶預判未來預報值的可能誤差趨勢;并提供未來168 h逐日要素預報。④與以往的數據庫后臺支撐不同,本系統直接將35 GB格點預報數據一次性讀入內存,進行偵聽,解決了數據庫檢索、調用效率低下的問題。

    Abstract:

    Finemesh grid element forecast is important service in the China Meteorological Administration,and also the future development direction of weather forecast. How to effectively provide forecast products to users is the final step of finemesh grid point forecast. This article introduces a finemesh grid point forecast and display system in Shaanxi based on the BaiduMap application programming interface. This system uses the dynamical bias correction method to improve precipitation forecast,based on the hourly fusion precipitation data of CMORPH (NOAA Climate Prediction Center Morphing Method) satellites and gauged rainfall from about 30 000 automatic weather stations. At the same time, the moving linear regression method is used to improve temperature prediction. It can get geographic information of any position and display 240hour meteorological element forecast in realtime for the corresponding grids. Through calculating the forecast values with the finemesh grid value for 98 station spots in Shaanxi for 3 hours, the errors between the precipitation forecast, temperature forecast and the observed values are analyzed in the last 24 hours in realtime for users to anticipate possible errors in future to provide the daily element forecast of 98 stations in the next 168 hours. Different from the previous database background support, the system reads the 35 GB gridpoint forecast data directly into memory at one time, and intercepts, so to solve the low efficiency problem of database searches and calls.

    參考文獻
    相似文獻
    引證文獻
引用本文

張宏芳,李建科,陳小婷,盧珊,潘留杰.基于百度地圖的精細化格點預報顯示[J].氣象科技,2017,45(2):261~268

復制
分享
文章指標
  • 點擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2016-03-23
  • 定稿日期:2016-08-23
  • 錄用日期:
  • 在線發布日期: 2017-05-04
  • 出版日期:
您是第位訪問者
技術支持:北京勤云科技發展有限公司
午夜欧美大片免费观看,欧美激情综合五月色丁香,亚洲日本在线视频观看,午夜精品福利在线
>