基于改進mRMR特征選擇的云型識別研究
DOI:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

公益性行業(氣象)專項:天氣現象自動化觀測技術研究(GYHY200906032)資助


Study of Cloud Type Recognition Based on an Improved mRMR Feature Selection Method
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    傳統的云型識別主要是提取云的顏色、紋理和形狀等特征,但這些特征中存在不相關和冗余特征,導致云型識別率降低。在最大相關最小冗余(max relevance and min redundancy, mRMR)特征選擇方法的基礎上,運用互信息標準化形式(Symmetrical Uncertainty, SU)克服互信息偏向于取值較多屬性的固有缺點,提出了改進的mRMR特征選擇方法,對云的綜合特征集進行特征篩選,篩選出最優特征子集,運用支持向量機進行云型識別。試驗結果表明該方法優于mRMR方法,使層云、積云、高積云、卷云和晴空5種天空類型的總正確率提高,特征選擇前、后的總識別率分別為86.96% 、89.04%,識別率提高了2%;對于云型識別研究,經過特征選擇后可知紋理特征優于形狀特征,基于形狀的Zernike矩優于HU不變矩,基于紋理的灰度共生矩陣為最優特征提取方法。

    Abstract:

    In the traditional cloud type recognition method, a set of features describing the color, texture and shape features of clouds are extracted, in which there are some irrelevance and redundancy features leading to the reduced recognition rate of cloud type. Based on the criteria of the max relevance and min redundancy (mRMR), symmetrical uncertainty is employed to overcome the inherent defect of mutual information, which tends to have more value attributes. The improved mRMR feature selection method is putted forward, and the best feature subsets are selected by this method, and then the support vector machine is used to the recognition of cloud type. Experimental results show that the correct recognition rate of altocumulus, cirrus, clear, cumulus, and stratus are improved significantly, with the total recognition rate being 86.96%; after feature selection, the total recognition rate can increase to 89.04%, and the recognition rate increases by 2%. For cloud type classification research, the texture feature is better than the shape feature; the shape features based on Zernike moment is better than HU moment invariants; the texture feature based on the gray level co occurrence matrix is the optimum feature extraction method.

    參考文獻
    相似文獻
    引證文獻
引用本文

王俊,謝明元,楊玲,湯志亞,楊智鵬.基于改進mRMR特征選擇的云型識別研究[J].氣象科技,2013,41(5):803~808

復制
分享
文章指標
  • 點擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2012-05-27
  • 定稿日期:2012-10-09
  • 錄用日期:
  • 在線發布日期: 2013-10-31
  • 出版日期:
您是第位訪問者
技術支持:北京勤云科技發展有限公司
午夜欧美大片免费观看,欧美激情综合五月色丁香,亚洲日本在线视频观看,午夜精品福利在线
>