列序分析在大氣環境污染分析中的應用
DOI:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:


Ordinal Analysis and Its Application to Air Environmental Pollution
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    提出了不同于計算相關系數的列序分析的方法,思路來源于變量序列間的幾何形狀接近程度,幾何形狀接近的序列,度量其靠近程度的指數應大,反之就小。將靠近程度大小按序排列,就得到變量序列間的聯系程度的名次。從實用出發,針對不同性質的數據,提出了4種列序度計算方案。選取了計算加權平方距離的方案對大氣污染及其有關的氣象要素數據進行了實例計算。通過計算列序度并與相關系數對照,可以更可靠地來使用某個氣象要素制作預報,另外,從數學上證明列序分析與絕對值關聯度、歐氏距離間的關系,由此論證了列序分析的數學根基。數學推導和數值計算都證實了列序分析的可用性,尤其在量測為小樣本的情況下更有使用價值。

    Abstract:

    The method for calculating time sequences through ordinal analysis, unlike correlation coefficient calculation, is presented, in which the idea comes from the closeness of the geometry between the variable sequences. For the sequences with the geometry closer to each other, the index that measures the closeness is bigger and vice versa. Putting the closeness in numerical order, the ranking of degree of contact between the variable sequences can be obtained. Four sequence calculation methods for different nature of the data from the practical point of view are proposed. Choosing the scheme of calculating the weighted squared distance, the related calculation is conducted with air pollution and its related meteorological elements data. By calculating the closeness degree of sequences and comparing with the coefficient method, it is concluded that by the method it is more reliable to use a meteorological element in forecasting. The relationship between the ordinal analysis and the correlation degree of absolute values, as well as the Euclidean distance mathematically, is proved, and the mathematical foundation of ordinal analysis is thus demonstrated. Mathematical derivation and numerical calculations both confirm the availability of ordinal analysis; especially it is useful in the case of measurements for small samples.

    參考文獻
    相似文獻
    引證文獻
引用本文

蔡秀華,曹鴻興,呂行.列序分析在大氣環境污染分析中的應用[J].氣象科技,2013,41(3):583~586

復制
分享
文章指標
  • 點擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2012-02-17
  • 定稿日期:2012-09-05
  • 錄用日期:
  • 在線發布日期: 2013-06-24
  • 出版日期:
您是第位訪問者
技術支持:北京勤云科技發展有限公司
午夜欧美大片免费观看,欧美激情综合五月色丁香,亚洲日本在线视频观看,午夜精品福利在线
>