極端氣溫集成預報方法對比
DOI:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

甘肅省氣象局“多模式氣溫釋用及預報集成”項目(2009 07)資助


Comparitive Analysis of Consensus Forecast for Extreme Temperature
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    用2003—2009年ECMWF和慶陽市極端氣溫資料建立最高最低氣溫SVM、Kalman、多元線性回歸3種統計方法的預報模型,采用平均、加權、回歸3種方法進行預報集成,對慶陽市2010年6—12月各預報方法及5個時次集成預報進行評估。結果表明:單一的SVM、多元回歸和集成方法最低氣溫預報5個時次的準確率均高于最高氣溫0.8%~24.2%,集成后加權法準確率最高,但最高和最低氣溫選取權重不同,SVM權重大時最高氣溫效果好,多元回歸權重大時最低氣溫效果好。隨著預報時效的增加,單一的預報方法和集成預報,預報準確率降低。逐月評估表明,單一的SVM準確率較高且預報性能穩定,Kalman準確率較低,回歸方法各月差異大,預報不穩定,集成后,3種集成方法的預報比單一的預報方法均有所改善和提高。絕對誤差分析表明,加權集成后最高和最低氣溫誤差都較小,優于平均集成法和回歸集成法。

    Abstract:

    The statistical models of SVM, Kalman and multi dimensional linear regression are established for extreme temperature with the ECMWF (European Centre for Medium Range Weather Forecasts) grid data and the observation data of Qingyan from 2003 to 2009. The methods of average, weighting, and regression are used in forecast integration. The integrated forecasts indicate that the accuracies of minimum temperature are 0.8% to 24.2% higher than those of maximum temperature by means of SVM, multiple regression and integrated methods at various time from June to December 2010. The weighting method is the best, then the integration, but the weight is different for maximum and minimum temperature: the accuracy of maximum temperature is better when the SVM weight is greater, and the accuracy of minimum temperature is better when the weight of multiple regression is greater. The forecasting accuracy decreases with increasing led time for both single and consensus forecast methods. The month to month verification indicates that the accuracy of the single SVM method is relatively high and stable; that of the Kalman is relatively low; and that of the regression is unstably. The integrated results of three methods show improving, and the absolute errors of both maximum and minimum temperature after weighting integration are small, better than those of the average and regression methods.

    參考文獻
    相似文獻
    引證文獻
引用本文

吳愛敏.極端氣溫集成預報方法對比[J].氣象科技,2012,40(5):772~777

復制
分享
文章指標
  • 點擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2011-06-13
  • 定稿日期:2011-09-27
  • 錄用日期:
  • 在線發布日期: 2012-10-29
  • 出版日期:
您是第位訪問者
技術支持:北京勤云科技發展有限公司
午夜欧美大片免费观看,欧美激情综合五月色丁香,亚洲日本在线视频观看,午夜精品福利在线
>