上海城市空氣質量預報分類統計模型
DOI:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

P457 P425.4

基金項目:

中國氣象局“十五”基本建設項目“上海城市環境氣象業務服務系統建設”資助


Classified Statistic Model of Urban Ambient Air Quality Forecasting in Shanghai
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    上海城市空氣質量預報的分類統計模型利用上海地區2000年6月至2002年12月的空氣污染濃度資料及常規氣象資料建立模型,用2003年全年資料檢驗模型。模型采用方差分析方法區分不同污染濃度高低的氣象條件,按季節、地面風向和雨量3項指標對濃度樣本分類,季節分類劃分冬、夏半年子樣本,風向分類劃分偏西風向、非西風向子樣本,雨量分類劃分有雨、無雨子樣本,共計3層分類,18個分類子樣本,樣本分類的高值區和低值區與實際污染濃度的季節、地面風向和雨量的分布是一致的。最后,采用線性逐步回歸方法對各分類子樣本建立起一組預報模型。模型的檢驗評分結果顯示:分類統計模型較全樣本統計模型實際業務預報精度有所提高,在城市空氣質量預報中是切實可行的。

    Abstract:

    The classified statistic model of urban ambient air quality forecasting was established by means of pollutant concentration data from June 2000 to December 2002 in Shanghai, and its forecast capability was tested by 1-year (2003) data. Variance analysis was selected to classify the samples, empirically taking season, surface wind direction and precipitation as 3 indicators: winter-half-year and summer-half-year sub-samples (season), west wind and non-west wind sub-samples (wind direction), and rainfall and non-rainfall sub-samples (precipitation). After the 3-layer classification, the whole sample was divided into 18 sub-samples. The high and low concentration sections of the sample classification are practically in accordance with the season, surface wind direction and precipitation distributions of pollutant concentrations. Finally the classified sub-samples were processed to establish a set of forecasting models by the linear successive regression technique. In the capability testing, the classified statistic model has proved feasible in the urban ambient air quality forecasting with higher prediction accuracy compared to the total sample statistic model.

    參考文獻
    相似文獻
    引證文獻
引用本文

陰俊 談建國.上海城市空氣質量預報分類統計模型[J].氣象科技,2004,32(6):410~413

復制
分享
文章指標
  • 點擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:
  • 定稿日期:2004-04-21
  • 錄用日期:
  • 在線發布日期:
  • 出版日期:
您是第位訪問者
技術支持:北京勤云科技發展有限公司
午夜欧美大片免费观看,欧美激情综合五月色丁香,亚洲日本在线视频观看,午夜精品福利在线
>